1(a) Rearrange m(x+3)=2+x to make m the subject.

ANSWER: Multiple Choice (Type 1)

A: m = -1

B: m = (2 + x)(x + 3)

C: m = (x+3)

D: m = \bigg(\dfrac{2 + x}{3}\bigg) - x

Answer: C

Marks = 1

 

1(b) Rearrange 2px + 3p = 1 + 2x to make p the subject.

ANSWER: Multiple Choice (Type 1)

A: p = \dfrac{1 + 2x}{6x}

B: p = \dfrac{2x + 3}{1 + 2x}

C: p = \dfrac{6x}{1 + 2x}

D: p = \dfrac{1 + 2x}{2x + 3}

Answer: D

Workings:

p(2x + 3) = 1 + 2x

p = \dfrac{1 + 2x}{2x + 3}

Marks = 2

 

1(c) Rearrange 2mx+10=3x+m  to make x the subject.

ANSWER: Multiple Choice (Type 1)

A: x = \dfrac{m - 10}{2m - 3}

B: x = \dfrac{m + 10}{2m - 3}

C: x = \dfrac{m - 10}{2m + 3}

D: x = \dfrac{m + 10}{2m + 3}

Answer: A

Workings:

2mx - 3x = m - 10

x(2m - 3) = m - 10

x = \dfrac{m-10}{(2m-3)}

Marks = 3


Question 2

Rearrange the formula below to make m the subject.

n = \dfrac{m-4}{m+3}

ANSWER: Multiple Choice (Type 1)

A: m = \dfrac{-4 - 3n}{n-1}

B: m = -\bigg(\dfrac{4+3n}{n-1}\bigg)

C: m = \dfrac{4-3n}{n-1}

D: m = \dfrac{4-3n}{n+1}

Answer: A

Workings:

n(m + 3) = m - 4

mn + 3n = m - 4

mn -m = -4 - 3n

m(n-1) = -4 - 3n

m = \dfrac{-4 - 3n}{n-1}

Marks = 4


Question 3

Rearrange the formula below to make x the subject.

y + 1 = \dfrac{2x - 10}{x + 1}

ANSWER: Multiple Choice (Type 1)

A: x = \dfrac{y+10}{y-1}

B: x = \dfrac{-y - 10}{y-1}

C: x = \dfrac{y + 11}{1-y}

D: x = \dfrac{y - 11}{1+y}

Answer: C

Workings:

(y+1)(x+1) = 2x - 10

xy + x + y + 1 = 2x - 10

y + 11 = x - xy

y + 11 = x(1-y)

x = \dfrac{y + 11}{(1-y)}

Marks = 4


Question 4

The formula for the volume of a cone, V cm^3, is shown below:

V = \dfrac{1}{3}\pi r^2 h

Given that the height of the cone is twice the radius, find r in terms of V.

ANSWER: Multiple Choice (Type 1)

A: r = \sqrt[3]{\dfrac{2\pi}{3V}}

B: r = \sqrt[3]{\dfrac{3V}{2\pi}}

C: r = \sqrt{\dfrac{3V}{2\pi h}}

D: r = \sqrt{\dfrac{2\pi h}{3V}}

Answer: B

Workings:

h = 2r

V = \dfrac{1}{3}\pi r^2(2r)

V = \dfrac{2}{3}\pi r^3

r^3 = \dfrac{3V}{2\pi}

r = \sqrt[3]{\dfrac{3V}{2\pi}}

Marks = 3