Question 1

Rearrange the following equations to make x the subject.

For all questions, give your answer in its simplest form.

 

1(a) 3x = 8

ANSWER: Multiple Choice (Type 1)

A: x = 24

B: x = \dfrac{3}{8}

C: x = 5

D: x = \dfrac{8}{3}

Answer: D

Marks = 1

 

1(b) 5x = 2y

ANSWER: Mutiple Choice (Type 1)

A: x = \dfrac{5}{2y}

B: x = 10y

C: x = \dfrac{2}{5}y

D: x = \dfrac{5}{2}y

Answer: C

Marks = 1

 

1(c) \dfrac{5}{x} = 2y

ANSWER: Mutiple Choice (Type 1)

A: x = \dfrac{5}{2y}

B: x = 10y

C: x = \dfrac{2}{5}y

D: x = \dfrac{5}{2}y

Answer: A

Marks = 1

 

1(d) 10 -  x = 5

ANSWER: Mutiple Choice (Type 1)

A: x = 5

B: x = 15

C: x = 2

D: x = -5

Answer: A

Marks = 1


Question 2

2(a) Rearrange b - 2x = n to make b the subject.

ANSWER: Multiple Choice (Type 1)

A: b = n- 2x

B: b = n + 2x

C: b = \dfrac{n}{2x}

D: b = -\dfrac{n}{2x}

Answer: B

Marks = 1

 

2(b) Rearrange t^2 = 3x + 1 to make x the subject.

ANSWER: Multiple Choice (Type 1)

A: x = \dfrac{1 - t^2}{3}

B: x = \dfrac{t^2}{3} - 1

C: x = \dfrac{t^2}{3} + 1

D: x = \dfrac{t^2 -1}{3}

Answer: D

Workings:

t^2 - 1 = 3x

x = \dfrac{t^2 -1}{3}

Marks = 1

 

2(c) Rearrange 3p + 4 = 6 - q to make q the subject.

Simplify your answer.

ANSWER: Multiple Choice (Type 1)

A: q = 3p + 10

B: q = -3p - 2

C: q = 2 - 3p

D: q = \dfrac{6}{3p + 4}

Answer: C

Workings:

q = 6 - (3p + 4) = 6 -3p - 4

q = 2 - 3p

Marks = 1

 

2(d) Given \sqrt{x-2} = 3a find x in terms of a

ANSWER: Multiple Choice (Type 1)

A: x = 2 + 9a^2

B: x = 2 + 3a^2

C: x = 2 - 9a^2

D: x = 2 - 3a^2

Answer: A

Workings:

x - 2 = (3a)^2 = 9a^2

x = 2 + 9a^2

Marks = 2


Question 3

3(a) Make S the subject  of 2S + 3 = T - 5

ANSWER: Multiple Choice (Type 1)

A: S = \dfrac{T-2}{2}

B:S = \dfrac{T-5}{2} +3

C: S = \dfrac{T-8}{2}

D:S = \dfrac{T-5}{2} -3

Answer: C

Workings:

2S = T - 8

S = \dfrac{T-8}{2}

Marks = 2

 

3(b) Make y the subject of \dfrac{3 + x}{y} = 2x + 1

ANSWER: Multiple Choice (Type 1)

A: y = \dfrac{3 + x}{2x + 1}

B: y = 2 - x

C: y = \dfrac{3 + x}{2x} - 1

D: y = \dfrac{3 + x}{2x - 1}

Answer: A

Workings:

3 + x = y(2x + 1)

y = \dfrac{3 + x}{2x + 1}

Marks = 2


Question 4

 

4(a) Rearrange a^2 + b^2 = c^2 to make b the subject

 

ANSWER:

b = \sqrt{c^2 - a^2}

 

b = \sqrt{c^2 + a^2}

b = c + a

b = \sqrt{c + a}

 

Workings:

Step 1: b^2 = c^2 -a^2

Step 2: b = \sqrt{c^2 - a^2}

Marks = 2

 

4(b) Rearrange \sqrt{a+b} = c to make b the subject

 

ANSWER:

b = c^2 -a

 

b = \sqrt{c^2 + a^2}

b = (c + a)^2

b = \sqrt{c }+a

 

Workings:

Step 1: a+b = c^2

Step 2: b = c^2 -a

Marks = 2

 


 

Question 5 

Rearrange the following to make x the subject of the equation

 

\dfrac{x+1}{2} +10 = y

 

ANSWER:

x = 2y-21

 

x = \dfrac{2}{y-21}

x = 2y-19

x = \dfrac{1}{y-19}

 

Workings:

Step 1: \dfrac{x+1}{2} +10 = y

Step 2:\dfrac{x+1}{2} = y-10

Step 3: x+1 = 2(y-10)

Step 4: x+1 = 2y-20

Step 5: x = 2y-20-1

Step 6: x = 2y-21

 


Question 6

 

Patrick is trying to rearrange the following formula in order to make x the subject of the formal

\dfrac{x+y}{3} + z = \dfrac{3}{y}

He performs the following steps:

\begin{aligned}\text{Line } 1:\,\,\, \dfrac{x+y}{3} + z &= \dfrac{3}{y} \\\\ \text{Line } 2:\,\,\,\,\,\,\,\,\,\,\,\,\, \dfrac{x+y}{3}  &= \dfrac{3}{y-z}  \\\\ \text{Line } 3:\,\,\,\,\,\,\,\,\,\,\,\,\,\, x+y  &= 3\bigg(\dfrac{3}{y-z} \bigg) \\\\ \text{Line } 4:\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \,\,\,\,\,\,\,x &= 3\bigg(\dfrac{3}{y-z}\bigg) -y \end{aligned}

Patrick has made a mistake with his rearrangement.

 

6(a) Give the correct equation for \text{Line } 2

\dfrac{x+y}{3}  = \dfrac{3}{y} - z

 

\dfrac{x+y}{3}  = \dfrac{3}{y+z}

\dfrac{x+y}{3}  = \dfrac{3}{y} + z

\dfrac{x+y}{3}  = \dfrac{3}{y z}

 

Working 
\dfrac{x+y}{3}  = \dfrac{3}{y} - z

we must subtract z from both sides, placing it outside the fraction.

 

 

6(b) Give the correct equation for \text{Line } 3

x+y  = 3\bigg(\dfrac{3}{y} - z\bigg)

 

x+y  = 3\bigg(\dfrac{3}{y-z}\bigg)

x+y  = \bigg(\dfrac{3}{y-z}\bigg)^3

x+y  = 3\bigg(\dfrac{3}{y} - z\bigg)^3

 

Working 
x+y  = 3\bigg(\dfrac{3}{y} - z\bigg)

We must multiply both sides by three giving this result.

 

 

6(c) Give the correct equation for \text{Line } 4

x = 3\bigg(\dfrac{3}{y} - z\bigg) -y

 

x  = 3\bigg(\dfrac{3}{y} - z\bigg)^3 - y

x  = \bigg(\dfrac{3}{y-z}\bigg)^3 - y

x = 3\bigg(\dfrac{3}{y} - z\bigg) \times y

 

Answer:

\begin{aligned}\text{Line } 1:\,\,\, \dfrac{x+y}{3} + z &= \dfrac{3}{y} \\\\ \text{Line } 2:\,\,\,\,\,\,\,\,\,\,\,\,\, \dfrac{x+y}{3}  &= \dfrac{3}{y} - z \\\\ \text{Line } 3:\,\,\,\,\,\,\,\,\,\,\,\,\,\, x+y  &= 3\bigg(\dfrac{3}{y} - z\bigg) \\\\ \text{Line } 4:\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \,\,\,\,\,\,\,x &= 3\bigg(\dfrac{3}{y} - z\bigg) -y \end{aligned}

For \text{Line } 4 we simply subtract y from both sides