Question 1

The following quadratics can be expressed in the form (x+a)(x+b)(x+a)(x+b).

Give the values of aa and bb where aa is greater (more positive) than bb.

 

1(a) x2+14x+48x^2+ 14x + 48

ANSWER: Multiple Answers (Type 1)

Answer: a=8a = 8, b=6b = 6

Workings:

x2+14x+48=(x+8)(x+6)x^2+ 14x + 48 = (x + 8)(x + 6)

(x+8)(x+6)(x + 8)(x + 6) so a=8a = 8, b=6b = 6

Marks = 2

 

1(b) x2+13x+42x^2+ 13x + 42

ANSWER: Multiple Answers (Type 1)

Answer: a=7a = 7, b=6b = 6

Workings:

x2+13x+42=(x+7)(x+6)x^2+ 13x + 42 = (x + 7)(x + 6)

(x+7)(x+6)(x + 7)(x + 6) so a=7a = 7, b=6b = 6

Marks = 2

 

1(c) x2+10x+16x^2+ 10x + 16

ANSWER: Multiple Answers (Type 1)

Answer: a=8a = 8, b=2b = 2

Workings:

x2+10x+16=(x+2)(x+8)x^2+ 10x + 16 = (x + 2)(x + 8)

(x+2)(x+8)(x + 2)(x + 8) so a=8a = 8, b=2b = 2

Marks = 2

 

1(d) x2+8x+7x^2+ 8x + 7

ANSWER: Multiple Answers (Type 1)

Answer: a=7a = 7, b=1b = 1

Workings:

x2+8x+7=(x+7)(x+1)x^2+ 8x + 7 = (x +7)(x + 1)

(x+7)(x+1)(x + 7)(x + 1) so a=7a = 7, b=1b = 1

Marks = 2

 

1(e) x2+12x+32x^2+ 12x + 32

ANSWER: Multiple Answers (Type 1)

Answer: a=8a = 8, b=4b = 4

Workings:

x2+12x+32=(x+8)(x+4)x^2+ 12x + 32 = (x +8)(x + 4)

(x+8)(x+4)(x + 8)(x +4) so a=8a = 8, b=4b = 4

Marks = 2


Question 2

The following quadratics can be expressed in the form (x+a)(x+b)(x+a)(x+b).

Give the values of aa and bb where aa is greater (more positive) than bb.

 

2(a) x210x+24x^2- 10x + 24

ANSWER: Multiple Answers (Type 1)

Answer: a=4a = -4, b=6b = -6

Workings

x210x+24=(x4)(x6)x^2- 10x + 24 = (x - 4)(x - 6)

(x4)(x6)(x - 4)(x - 6) so a=4a = -4, b=6b = -6

Marks = 2

 

2(b) x211x+28x^2- 11x + 28

ANSWER: Multiple Answers (Type 1)

Answer: a=4a = -4, b=7b = -7

Workings:

x211x+28=(x4)(x7)x^2- 11x + 28 = (x-4)(x-7)

(x4)(x7)(x-4)(x-7) so a=4a = -4, b=7b = -7

Marks = 2

 

2(c) x211x+30x^2- 11x + 30

ANSWER: Multiple Answers (Type 1)

Answer: a=5a = -5, b=6b = -6

Workings:

x211x+30=(x5)(x6)x^2- 11x + 30 = (x-5)(x-6)

(x5)(x6)(x-5)(x-6) so a=5a = -5, b=6b = -6

Marks = 2

 

2(d) x28x+15x^2- 8x + 15

ANSWER: Multiple Answers (Type 1)

Answer: a=3a = -3, b=5b = -5

Workings:

x28x+15=(x3)(x5)x^2- 8x + 15 = (x-3)(x-5)

(x3)(x5)(x-3)(x-5) so a=3a = -3, b=5b = -5

Marks = 2

 

2(e) x24x+4x^2- 4x + 4

ANSWER: Multiple Answers (Type 1)

Answer: a=2a = -2, b=2b = 2

Workings:

x24x+4=(x2)(x2)x^2- 4x + 4 = (x-2)(x-2)

(x2)(x2)(x-2)(x-2) so a=2a = -2, b=2b = -2

Marks = 2


Question 3

The following quadratics can be expressed in the form (x+a)(x+b)(x+a)(x+b)

Give the values of aa and bb where aa is greater (more positive) than bb.

 

3(a) x2+x30x^2+ x - 30

ANSWER: Multiple Answers (Type 1)

Answer: a=6a = 6, b=5b = -5

Workings:

x2+x30=(x+6)(x5)x^2+ x - 30 = (x+6)(x-5)

(x+6)(x5)(x+6)(x-5) so a=6a = 6, b=5b = -5

Marks = 2

 

3(b) x2+2x35x^2+ 2x - 35

ANSWER: Multiple Answers (Type 1)

Answer: a=7a = 7, b=5b = -5

Workings:

x2+2x35=(x+7)(x5)x^2+ 2x - 35 = (x+7)(x-5)

(x+7)(x5)(x+7)(x-5) so a=7a = 7, b=5b = -5

Marks = 2

 

3(c) x2+4x5x^2+ 4x - 5

ANSWER: Multiple Answers (Type 1)

Answer: a=5a = 5, b=1b = -1

Workings:

x2+4x5=(x+5)(x1)x^2+ 4x - 5 = (x+5)(x-1)

(x+5)(x1)(x+5)(x-1) so a=5a = 5, b=1b = -1

Marks = 2

 

3(d) x2x2x^2- x - 2

ANSWER: Multiple Answers (Type 1)

Answer: a=1a = 1, b=2b = -2

Workings:

x2x2=(x+1)(x2)x^2- x - 2 = (x+1)(x-2)

(x+1)(x2)(x+1)(x-2) so a=1a = 1, b=2b = -2

Marks = 2

 

3(e) x24x5x^2- 4x - 5

ANSWER: Multiple Answers (Type 1)

Answer: a=1a = 1, b=5b = -5

Workings:

x24x5=(x+1)(x5)x^2- 4x - 5 = (x+1)(x-5)

(x+1)(x5)(x+1)(x-5) so a=1a = 1, b=5b = -5

Marks = 2


Question 4

The following quadratics can be expressed in the form (x+a)(x+b)(x+a)(x+b)

Give the values of aa and bb where aa is greater (more positive) than bb.

 

4(a) x23x40x^2- 3x - 40

ANSWER: Multiple Answers (Type 1)

Answer: a=5a = 5, b=8b = -8

Workings:

x23x40=(x+5)(x8)x^2- 3x - 40 = (x+5)(x-8)

(x+5)(x8)(x+5)(x-8) so a=5a = 5, b=8b = -8

Marks = 2

 

4(b) x2+5x+4x^2+ 5x + 4

ANSWER: Multiple Answers (Type 1)

Answer: a=4a = 4, b=1b = 1

Workings:

x2+5x+4=(x+4)(x+1)x^2+ 5x + 4 = (x+4)(x+1)

(x+4)(x+1)(x+4)(x+1) so a=4a = 4, b=1b = 1

Marks = 2

 

4(c) x2+3x18x^2+ 3x - 18

ANSWER: Multiple Answers (Type 1)

Answer: a=6a = 6, b=3b = -3

Workings:

x2+3x18=(x+6)(x3)x^2+ 3x - 18 = (x+6)(x-3)

(x+6)(x3)(x+6)(x-3) so a=6a = 6, b=3b = -3

Marks = 2

 

4(d) x2+x2x^2+ x - 2

ANSWER: Multiple Answers (Type 1)

Answer: a=2a = 2, b=1b = -1

Workings:

x2+x2=(x+2)(x1)x^2+ x - 2 = (x+2)(x-1)

(x+2)(x1) (x+2)(x-1) so a=2a = 2, b=1b = -1

Marks = 2

 

4(e) x26x+5x^2- 6x + 5

ANSWER: Multiple Answers (Type 1)

Answer: a=1a = -1, b=5b = -5

Workings:

x26x+5=(x1)(x5)x^2- 6x + 5 = (x-1)(x-5)

(x1)(x5)(x-1)(x-5) so a=1a = -1, b=5b = -5

Marks = 2