Question 1

Factorise and thus solve the following quadratic equations, finding both values of x:

 

1(a) 3x^2+10x-8=0

ANSWER: Multiple choice type 1

A: x = \dfrac{2}{3}, x= -4

B: x = - \dfrac{2}{3}, x= 4

C: x = \dfrac{2}{3}, x= 4

D: x = -\dfrac{2}{3}, x= -4

Answer: A

Workings:

(3x-2)(x+4)=0

x = \dfrac{2}{3} or x= -4

Marks = 3

 

 

1(b) 3x^2+39x+126=0

ANSWER: Multiple Answers (Type 2)

Answer: x=-6, x=-7

Workings:

x^2+13x+42=0

(x+6)(x+7)=0[/latex]

x=-6 or x=-7

Marks = 3

 

1(c) 8x^2+ 46x + 30=0

ANSWER: Multiple choice type 1

A: x= -\dfrac{3}{4}, x=-5

B: x= -\dfrac{3}{4}, x=5

C: x= \dfrac{3}{4}, x=-5

D: x= \dfrac{3}{4}, x=5

Answer: A

Workings:

(8x + 6)(x + 5)=0

x= -\dfrac{3}{4}  or x=-5

Marks = 3

 

1(d) 8x^2+10x+56 = 7x^2+67

ANSWER: Multiple Answers (Type 2)

Answer: x=1 or x=-11

Workings:

x^2+10x-11=0

(x-1)(x+11)=0

x=1 or x=-11

Marks = 3


Question 2

The triangular prism chocolate box shown below has a volume of 140 cm^3.

Determine the only viable length of x.

ANSWER: Simple Text Answer

Answer: x = 2

Workings:

Area \space of \space Triangle = \dfrac{1}{2}base \times height = \dfrac{1}{2}(x+3)(4) = 2x+6

Volume \space of \space Prism = 7x×2x+6 = 14x^2+42x

14x^2+42x=140

x^2+3x-10=0

(x+5)(x-2)=0

x=2 as a length cannot be negative.

Marks = 5

 


Question 3

Factorise and thus solve the following quadratic equations, finding both values of x:

 

3(a) 2x^2+ 14x + 24=0

ANSWER: Multiple Answers (Type 2)

x=-3

x=-4

 

Workings:

2x^2+ 14x + 24 = (2x + 6)(x + 4)

(2x + 6)(x + 4)=0

x = -3 and x = -4

 

Marks = 2

 

3(b) 3x^2+ 13x + 14=0

ANSWER: Multiple Choice

Answer:x=-\dfrac{7}{3} and x=-2

 

x=-\dfrac{3}{7} and x=2

x=-{3} and x=-2

x=-\dfrac{7}{3} and x=2

 

Workings:

3x^2+ 13x + 14 = (3x + 7)(x + 2)

(3x + 7)(x + 2)=0

x=-\dfrac{7}{3} and x=-2

Marks = 2

 

3(c) 3x^2+ 30x + 48=0

ANSWER: Multiple Answers (Type 2)

x=-2

x=-8

 

Workings:

3x^2+ 30x + 48 = (3x+6)(x+8)

(3x+6)(x+8)=0

x = -2 and x=-8

Marks = 2

 

3(d) 5x^2+ 39x + 28=0

Give your answer as a decimal where appropriate

ANSWER: Multiple Answers (Type 2)

x=-0.8

x=-7

 

Workings:

5x^2+ 39x + 28 = (5x+4)(x+7)

(5x+4)(x+7)=0

x=-0.8 and x=-7

Marks = 2

 

3(e) 5x^2+ 27x + 10=0

Give your answer as a decimal where appropriate

ANSWER: Multiple Answers (Type 2)

x= -0.4

x=-5

 

Workings:

5x^2+ 27x + 10 = (5x+2)(x+5)

(5x+2)(x+5)=0

x= -0.4 and x=-5

 

Marks = 2


Question 4

Factorise and thus solve the following quadratic equations, finding both values of x:

 

4(a) 4x^2+ 20x + 16

ANSWER: Multiple Answers (Type 2)

x=-4

x=-1

Workings:

4x^2+ 20x + 16 = (2x+8)(2x+2)

(2x+8)(2x+2)=0

or

4x^2+ 20x + 16 = (4x+4)(x+4)

(4x+4)(x+4)=0

 

x=-4 and x=-1

 

Marks = 2

 

4(b) 6x^2+ 32x + 42

ANSWER: Multiple Choice

Answer: x=-\dfrac{7}{3} and x=-2

 

x=-\dfrac{7}{3} and x=-3

x=-\dfrac{3}{7} and x=-3

x=-7 and x=-6

 

Workings:

6x^2+ 32x + 42 = (3x + 7)(2x + 6)

(3x + 7)(2x + 6)=0

x=-\dfrac{7}{3} and x=-3

Marks = 2

 

4(c) 4x^2  + 18x + 8

Give your answer as a decimal where appropriate

ANSWER: Multiple Answers (Type 2)

x=0.5

x=-4

 

 

Workings:

4x^2  + 18x + 8 = (4x + 2)(x + 4)

(4x + 2)(x + 4)=0

x=-0.5 and x=-4

Marks = 2

 

4(d) 9x^2+ 24x + 16

ANSWER: Multiple choice

Answer: x=-\dfrac{4}{3}

 

x=-4 and x=-3

x=4 and x=3

x=-\dfrac{3}{4}

 

 

Workings:

9x^2+ 24x + 16 = (3x+4)(3x+4)

(3x+4)(3x+4)=0

x=-\dfrac{4}{3}

Marks = 2


Question 5

Factorise and thus solve the following quadratic equations, finding both values of x:

 

5(a) 2x^2- 18x + 16

ANSWER: Multiple Answers (Type 2)

x=1

x=8

 

Workings:

2x^2- 18x + 16 = (2x - 2)(x - 8)

(2x - 2)(x - 8)=0

x=1 and x=8

Marks = 2

 

5(b) 3x^2- 20x + 12

ANSWER: Multiple Answers (Type 2)

Answer: x=\dfrac{2}{3} and x=6

 

x=\dfrac{3}{2} and x=6

x=\dfrac{3}{2} and x=-6

x=3 and x=6

 

Workings:

3x^2- 20x + 12 = (3x - 2)(x - 6)

(3x - 2)(x - 6)=0

x=\dfrac{2}{3} and x=6

 

Marks = 2

 

5(c) 8x^2- 26x + 6

Give your answer as a decimal where appropriate

ANSWER: Multiple Answers (Type 2)

x=0.25

x=3

 

Workings:

8x^2- 26x + 6 = (8x - 2)(x-3)

(8x - 2)(x-3)=0

x=0.25 and x=3

Marks = 2


Question 6

Factorise and thus solve the following quadratic equation, finding both values of x:

x^2-64=0

ANSWER: multiple answers

x=8

x=-8

 

Workings:

x^2-64 = (x+8)(x-8)

(x+8)(x-8)=0

x=8 and x=-8

Marks = 1