Question 1

Choose the correct definition of the quadratic formula.

ANSWER: Multiple choice type 1

A: x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}

B: x=\dfrac{-b\pm\sqrt{b^2-4ac}}{4a}

C:  x=\dfrac{b\pm\sqrt{b^2-4ac}}{2a}

D: x=\dfrac{b\pm\sqrt{b^2-4ac}}{4a}

Answer: A

Marks = 1


Question 2

For the following quadratic equations, determine the values for a, b and c in the quadratic formula.

 

2(a) x^2+x -10=0

ANSWER: Multiple Answers (Type 1)

Answer: a = 1, b = 1, c = -10

Marks = 1

 

2(b) 5x^2+3x-22=0

ANSWER: Multiple Answers (Type 1)

Answer: a = 5, b = 3, c = -22

Marks = 1

 

2(c) -x^2+3x+1=0

ANSWER: Multiple Answers (Type 1)

Answer: a = -1, b = 3, c = 1

Marks = 1

 

2(d) -x^2  -x-1=0

ANSWER: Multiple Answers (Type 1)

Answer: a = -1, b = -1, c =-1

Marks = 1


Question 3

For the following quadratic equations, determine the values for a, b and c in the quadratic formula.

 

3(a) 2x^2+x = -10

ANSWER: Multiple Answers (Type 1)

Answer: a = 2, b = 1, c = 10

Workings:

2x^2+x -10=0

a=2, b=1, c=10

Marks = 2

 

3(b) 5x^2=-3x+22

ANSWER: Multiple Answers (Type 1)

Answer: a=5, b=3, c=-22

Workings:

5x^2+3x -22=0

a=5, b=3, c=-22

Marks = 2

 

3(c)\dfrac{x^2}{3} = x+1

ANSWER: Multiple Answers (Type 1)

Answer: a=1, b=-3, c=-3

Workings:

x^2-3x -3=0

a=1, b=-3, c=-3

Marks = 2

 

3(d) x^2= \dfrac{7x-22}{3}

ANSWER: Multiple Answers (Type 1)

Answer: a=3, b=-7, c=22

Workings:

3x^2  -7x+22=0

a=3, b=-7, c=22

Marks = 2


Question 4

Use the quadratic formula to solve the following quadratic equations.

Give all answers to 2 decimal places.

You must show your working.

 

4(a) x^2+x -10=0

ANSWER: Multiple Answers (Type 2)

Answer: x= -3.70, x = 2.70

Workings:

a = 1, b = 1, c = -10

x = \dfrac{-1 \pm \sqrt{1^2 - (4 \times 1 \times -10)}}{2}

x= -3.70 and x = 2.70

Marks = 2

 

4(b) 5x^2+3x-22=0

ANSWER: Multiple Answers (Type 2)

Answer: x= -2.42, x = 1.82

Workings:

a = 5, b = 3, c = -22

x = \dfrac{-3 \pm \sqrt{3^2 - (4 \times 5 \times -22)}}{10}

x= -2.42 and x = 1.82

Marks = 2

 

4(c) -x^2+3x+1=0

ANSWER: Multiple Answers (Type 2)

Answer:x= -0.30, x = 3.30

Workings:

a = -1, b = 3, c = 1

x = \dfrac{-3 \pm \sqrt{3^2 - (4 \times -1 \times 1)}}{-2}

x= -0.30 and x = 3.30

Marks = 2

 

4(d) -x^2 -x + 5 = 0

ANSWER: Multiple Answers (Type 2)

Answer: x= -2.79 and x = 1.79

Workings:

a = -1, b = -1, c = 5

x = \dfrac{1 \pm \sqrt{(-1)^2 - (4 \times -1 \times 5)}}{-2}

x= -2.79 and x = 1.79

Marks = 2


Question 5

Solve for x, using the quadratic formula;

x^2+10x+20=0

ANSWER: Multiple Choice (Type 1)

A:x = 5 \pm \sqrt{5}

B: x = 5 \pm \sqrt{10}

C: x = -5 \pm \sqrt{5}

D: x = -5 \pm \sqrt{10}

Answer: C

Workings:

a = 1, b = 10, c = 20

\dfrac{-10 \pm \sqrt{10^2 - (4 \times 1 \times 20)}}{2 \times 1}

\dfrac{-10 \pm \sqrt{20}}{2}

x = -5 \pm \sqrt{5}

Marks = 3


Question 6

Solve for x, using the quadratic formula;

x^2-2(x+5) = 4x+8

Give your answer to 2 decimal places.

ANSWER: Multiple Answers (Type 1)

Answer: x = 8.20, x = -2.20

Workings:

x^2-6x-18=0

a = 1, b = -6, c = -18

x = \dfrac{-(-6) \pm \sqrt{(-6)^2 - (4 \times 1 \times (-18))}}{2 \times 1}

= \dfrac{6 \pm \sqrt{36 - (-72)}}{2}

= \dfrac{6 \pm \sqrt{108}}{2}

= 3 \pm 3\sqrt{3}

x = 8.20, x = -2.20

Marks = 3


Question 7

Solve for x, using the quadratic formula;

3x^2-42x+147=0

ANSWER: Simple text answer

Answer:

Workings:

x^2 - 14x + 49 = 0

a = 1, b= -14, c = 49

x = \dfrac{-(-14) \pm \sqrt{(-14)^2 - (4 \times 1 \times 49)}}{2 \times 1}

= \dfrac{14 \pm \sqrt{196 - 196}}{2}

x = 7

Marks = 2


Question 8

Solve for x, using the quadratic formula.

x^2-6 = \dfrac{2x+12}{-6}

ANSWER: Multiple Choice (Type 1)

A: x = \dfrac{-1 \pm \sqrt{145}}{6}

B: x = \dfrac{-1 \pm \sqrt{48}}{6}

C: x = \dfrac{1 \pm \sqrt{145}}{6}

D: x = \dfrac{1 \pm \sqrt{148}}{6}

Answer: A

Workings:

6x^2 + 2x - 24 = 0

Simplifies to

3x^2 + x - 12=0

a = 3, b = 1, c = -12

\dfrac{-1 \pm \sqrt{1^2 - (4 \times 3 \times (-12))}}{2 \times 3}

\dfrac{-1 \pm \sqrt{145}}{6}

Marks = 3