Question 1:

The following quadratics can be expressed in the form a(x + b)^2 + c

Give the values of a, b and c in each case.

 

1(a) 2x^2+8x+10

ANSWER: Multiple Answers (Type 1)

Answer: a=2, b=2, c=2

Workings:

2x^2+8x+10 = 2(x^2 +4x)+10

=2((x+2)^2 -4)+10

=2(x+2)^2+2

Marks = 2

 

1(b) 2x^2-16x-2

ANSWER: Multiple Answers (Type 1)

Answer: a=2, b=-4, c=-34

Workings:

2x^2-16x-2 = 2(x^2-8x)-2

=2((x-4)^2-16)-2

=2(x-4)^2-34

Marks = 2

 

1(c) 3x^2-24x+6

ANSWER: Multiple Answers (Type 1)

Answer: a=3, b=-8, c=-42

Workings:

3x^2-24x+6 = 3(x^2-8x)+6

3((x-4)^2-16)+6

=3(x-4)^2-42

Marks = 2


Question 2

The following quadratics can be expressed in the form a(x + b)^2 + c

Give the values of a, b and c in each case.

 

2(a) 3x^2+18x-1

ANSWER: Multiple Answers (Type 1)

Answer: a=3, b=3, c=-28

Workings:

3x^2+18x-1= 3(x^2+6x)-1

=3((x+3)^2-9)-1

=3(x+3)^2-28

Marks = 2

 

2(b) 4x^2-8x-8

ANSWER: Multiple Answers (Type 1)

Answer: a=4, b=-1, c=-12

Workings:

4x^2-8x-8 = 4(x^2-2x)-8

= 4((x-1)^2-1)-8

=4(x-1)^2-12

Marks =2

 

2(c)  6x^2-24x-8

ANSWER: Multiple Answers (Type 1)

Answer: a=6, b=-2, c=-12

Workings:

6x^2-24x-8= 6(x^2-4x)-8

=6((x-2)^2-4)-8

=6(x-2)^2-32

Marks = 2


Question 3:

The following quadratics can be expressed in the form a(x + b)^2 + c

Give the values of a, b and c in each case.

 

3(a) 3x^2+6x -8

ANSWER: Multiple Answers (Type 1)

Answer: a=3, b=1, c=-11

Workings:

3x^2+6x -8 = 3(x^2+2x)-8

=3((x+1)^2-1)-8

=3(x+1)^2-11

Marks = 2

 

3(b) 5x^2-20x-12

ANSWER: Multiple Answers (Type 1)

Answer: a=5, b=2, c=-32

Workings:

5x^2-20x-12 = 5(x^2--4x)-12

5((x-2)^2-4)-12

5(x-2)^2-32

Marks = 2

 

3(c) 8x^2+32x-12

ANSWER: Multiple Answers (Type 1)

Answer: a=8, b=2, c=-44

Workings:

8x^2+32x-12 = 8(x^2+4x)-12

8((x+2)^2-4)-12

8(x+2)^2-44

Marks = 2


Question 4:

A rectangle has sides of x and (x−2) cm.

The area of the rectangle is 16 cm^2.

4(a) Create an expression for the area of the rectangle.

Hence form an equation in the form a(x+b)^2+c=0 and give the values of a, b and c

ANSWER: Multiple Answers (Type 1)

Answer: a=2, b=1, c=-18

Workings:

2x(x-2)=16

2x(x-2)-16=0

2x^2-4x-16=0

2(x^2-2x)-16=0

2((x-1)^2-1)-16=0-

2(x-1)^2-18=0

Marks = 3

 

4(b) Hence, or otherwise, find the perimeter of the rectangle.

ANSWER: Simple text answer

Answer: 20 cm

Workings:

(x-1)^2=9

x=1 \pm 3

x=4

Perimeter, P=8+8+2+2=20 cm

Marks = 3


Question 5:

A small farmers field is shown below.

Given that the area of the field is 27 m^2.

Find the perimeter of the field in meters.

Give your answer in the form a\sqrt{10} + b where a and b are integers.

ANSWER: Multiple choice (Type 1)

A: 9\sqrt{10}+6

B: 9\sqrt{5}-6

C: 18\sqrt{5}+6

D: 18\sqrt{5}-6

Answer: B

Workings:

2x(x+6)=27

2x^2+12x-27=0

2[(x+3)^2-9]-27=0

2(x+3)^2-18-27=0

2(x+3)^2=45

x+3= \pm{\sqrt{\dfrac{45}{2}}}

x=-3 \pm\sqrt{\dfrac{45}{2}}=\dfrac{-6+3\sqrt{10}}{2}

Perimeter, P=2x+2x+(x+6)+(x+6)=6x+12

6x+12=6\times \bigg(\dfrac{-6+3\sqrt{10}}{2}\bigg)+12=-6+9\sqrt{10}

Marks = 6