Question 1:

Express the following as single fractions.

Give your answers in their simplest forms.

 

1(a) \dfrac{x-10}{2}+\dfrac{3x}{10}

ANSWER: Multiple Choice (Type 1)

A: \dfrac{4x-15}{5}

B: \dfrac{4x-20}{5}

C: \dfrac{4x-25}{5}

D: \dfrac{4x-30}{5}

Answer: C

Workings:

\dfrac{x-10}{2}+\dfrac{3x}{10}=\dfrac{5(x-10)}{10}+\dfrac{3x}{10}=\dfrac{8x-50}{10}=\dfrac{4x-25}{5}

Marks = 1

 

1(b) \dfrac{b-2}{3}-\dfrac{b}{2}

ANSWER: Multiple Choice (Type 1)

A: \dfrac{-b-4}{6}

B: \dfrac{-b-5}{6}

C: \dfrac{-b-7}{6}

D: \dfrac{-b-8}{6}

Answer: A

Workings:

\dfrac{b-2}{3}-\dfrac{b}{2}=\dfrac{2(b-2)}{6}-\dfrac{3b}{6}=\dfrac{-b-4}{6}

Marks = 1

 

1(c) \dfrac{a+3}{2}+\dfrac{2a-1}{3}

ANSWER: Multiple Choice (Type 1)

A: \dfrac{7(a+4)}{6}

B: \dfrac{7(a+3)}{6}

C: \dfrac{7(a+2)}{6}

D: \dfrac{7(a+1)}{6}

Answer: D

Workings:

\dfrac{a+3}{2}+\dfrac{2a-1}{3}=\dfrac{3a+9}{6}+\dfrac{4a-2}{6}=\dfrac{7a+7}{6}

=\dfrac{7(a+1)}{6}

Marks = 2


Question 2:

Express the following as single fractions.

Give your answers in their simplest forms.

 

2(a) \dfrac{3x+1}{6}+\dfrac{2x-2}{4}

ANSWER: Multiple Choice (Type 1)

A: \dfrac{2x-1}{3}

B: \dfrac{3x-1}{3}

C: \dfrac{4x-1}{3}

D: \dfrac{5x-1}{3}

Answer: B

Workings:

\dfrac{3x+1}{6}+\dfrac{2x-2}{4}=\dfrac{2(3x+1)}{12}+\dfrac{3(2x-2)}{12}

=\dfrac{12x-4}{12}=\dfrac{3x-1}{3}

Marks = 2

 

2(b) \dfrac{4}{2x-2}+\dfrac{10}{x-1}

ANSWER: Multiple Choice (Type 1)

A: \dfrac{10}{x-1}

B: \dfrac{11}{x-1}

C: \dfrac{12}{x-1}

D: \dfrac{13}{x-1}

Answer: C

Workings:

\dfrac{4}{2x-2}+\dfrac{10}{x-1}=\dfrac{4}{2x-2}+\dfrac{20}{2(x-1)}

=\dfrac{24}{2x-2}=\dfrac{12}{x-1}

Marks = 2

 

2(c) \dfrac{3(x+1)}{5x}+\dfrac{2x}{2x+2}

ANSWER: Multiple Choice (Type 1)

A: \dfrac{5x^2+6x+3}{2x^2+5x}

B: \dfrac{6x^2+6x+3}{3x^2+5x}

C:  \dfrac{7x^2+6x+3}{4x^2+5x}

D: \dfrac{8x^2+6x+3}{5x^2+5x}

Answer: D

Workings:

\dfrac{3(x+1)}{5x}+\dfrac{x}{x+1}=\dfrac{3(x+1)(x+1)}{5x(x+1)}=\dfrac{x(5x)}{5x(x+1)}

=\dfrac{3(x^2+3x+1)+5x^2}{5x^2+5x}

=\dfrac{8x^2+6x+3}{5x^2+5x}

Marks = 3


Question 3:

Simplify fully,

 

3(a) \dfrac{4x^2+16x}{x^2-16}

ANSWER: Multiple Choice (Type 1)

A: \dfrac{4x}{x-4}

B: \dfrac{5x}{x-4}

C: \dfrac{6x}{x-4}

D: \dfrac{7x}{x-4}

Answer: A

Workings:

\dfrac{4x(x+4)}{(x-4)(x+4)}

=\dfrac{4x}{x-4}

Marks = 2

 

3(b) \dfrac{2x+4}{x+1} \div  \dfrac{x^2+x-2}{2x^2+5x+3}

ANSWER: Multiple Choice (Type 1)

A: \dfrac{2x+6}{x-1}

B: \dfrac{3x+6}{x-1}

C: \dfrac{4x+6}{x-1}

D: \dfrac{5x+6}{x-1}

Answer: C

Workings:

\dfrac{2(x+2)}{x+1} \div \dfrac{(x+2)(x-1)}{(2x+3)(x+1)}

=\dfrac{2(x+2)}{x+1} \times \dfrac{(2x+3)(x+1)}{(x+2)(x-1)}

=\dfrac{2(2x+3)}{x-1}=\dfrac{4x+6}{x-1}

Marks = 3


Question 4:

Which of the following expressions is equal to \dfrac{1}{x+4}?

ANSWER: Multiple Choice (Type 1)

A: \dfrac{x-2}{x^2-6x+8}

B: \dfrac{x+4}{x^2+5x+6}

C: \dfrac{x-4}{x^2+6}

D: \dfrac{x+2}{x^2+6x+8}

Answer: D

Workings:

\dfrac{x+2}{x^2+6x+8}=\dfrac{x+2}{(x+2)(x+4)}

=\dfrac{x+2}{x^2+6x+8}

Marks = 2


Question 5

Simplify fully,

5(a) \dfrac{x-5}{x^2-25}

ANSWER: Multiple Choice (Type 1)

A: \dfrac{1}{x+5}

B: \dfrac{1}{x+6}

C: \dfrac{1}{x+7}

D: \dfrac{1}{x+8}

Answer: A

Workings:

\dfrac{x-5}{x^2-25}=\dfrac{x-5}{(x+5)(x-5)}=\dfrac{1}{x+5}

Marks = 1

 

5(b) \dfrac{x^2+x-6}{x^2-x-12}

ANSWER: Multiple Choice (Type 1)

A:\dfrac{x-5}{x-7}

B:\dfrac{x-4}{x-6}

C:\dfrac{x-3}{x-5}

D:\dfrac{x-2}{x-4}

Answer: D

Workings:

\dfrac{(x-2)(x+3)}{(x-4)(x+3)}

=\dfrac{x-2}{x-4}

Marks = 2


Question 6

Solve \dfrac{1}{2x-3}+\dfrac{4}{x+1}=1

ANSWER: Multiple Answers (Type 2)

Answer: x=1 or x=4

Workings:

\dfrac{(x+1)}{(2x-3)(x+1)}+\dfrac{4(2x-3)}{(2x-3)(x+1)}=1

\dfrac{x+1+8x-12}{(2x-3)(x+1)}=1

9x-11=(2x-3)(x+1)

9x-11=2x^2-x-3

0=2x^2-10x+8

x^2-5x+4=0

(x-4)(x-1)=0

x=1 or x=4

Marks = 4


Question 7

The diagram below shows a rectangle.

The perimeter of the rectangle is equal to 3 times the area.

Find the value of x.

ANSWER: Simple text answer

Answer: 2

Workings:

3ab=2a+2b

Thus,

\begin{aligned} 3\bigg[\bigg(\dfrac{2}{x+3}\bigg)\bigg(\dfrac{1}{x-3}\bigg)\bigg]&=2\bigg(\dfrac{2}{x+3}\bigg)+2\bigg(\dfrac{1}{x-3}\bigg) \\[2em] 3\bigg(\dfrac{2}{x^2-9}\bigg) &= \dfrac{4}{x+3}+\dfrac{2}{x-3}  \\[2em] \dfrac{6}{x^2-9} &=\dfrac{4(x-3)+2(x+3)}{(x+3)(x-3)} \\[2em] \dfrac{6}{x^2-9} &= \dfrac{4x-12+2x+6}{x^2-9} \\[2em] \dfrac{6}{x^2-9} &=\dfrac{6x-6}{x^2-9} \\[2em] \dfrac{6x-6}{6} &=\dfrac{x^2-9}{x^2-9} \\[2em] x-1 &= 1 \\[2em] x &=2\end{aligned}

Marks = 5