Question 1
Solve the simultaneous equations:
y=-x+2\\ y=x^2 + 2x – 1ANSWER: Multiple Answers (Type 1)
Answer:
x_1=-3.79, y_1=5.79
x_2=0.791,, y_2=1.21
Workings:
-x+2=x^2+2x-1
x^2+3x-3=0
Putting into quadratic formula:
x= \dfrac{-3\pm \sqrt{21}}{2}
This gives:
x_1=-3.79 OR x_2=0.791
Substituting these values into original equations gives:
y_1=5.79 OR y_2=1.21
(-3.79, 5.79) OR (0.791, 1.21)
Marks = 4
Question 2
Solve the simultaneous equations:
x^2+y^2=9\\ 2y=x+1ANSWER: Multiple Answers (Type 1)
Answer:
x_1=-2.85, y_1=-0.927
x_2=2.45, y_2=1.73
Workings:
Substituting equation two into equation one:
x^2+(\dfrac{x+1}{2})^2-9=0
x^2+\dfrac{x^2+2x+1}{4}-9=0
4x^2+x^2+2x+1-36=0
5x^2+2x-35=0
Putting into quadratic formula:
x = \dfrac{-2\pm \sqrt{704}}{10}
This gives:
x_1 = -2.85 OR x_2 = 2.45
Substituting these values into original equations gives:
y_1=-0.927 OR y_2 = 1.73
(-2.85,-0.927) OR (2.45, 1.73)
Marks = 4
ALT SOLUTION:
Rearranging equation two gives x=2y-1
Substituting this into equation one gives:
(2y-1)^2+y^2=9
4y^2-2y-2y+1+y^2=9
5y^2-4y-8=0
Using the quadratic formula:
y=\dfrac{-(-4) \pm \sqrt{(-4)^2 - (4 \times 5 \times (-8))}}{2 \times 5}
y=\dfrac{4 \pm \sqrt{176}}{10}
y_1 = 1.73, \quad y_2 = -0.927
Substituting these values of y back into equation two gives:
x_1 = 2.46, \quad x_2 = -2.85
Question 3
Solve the simultaneous equations:
3x+y=-9\\ x^2+2x-3 =yANSWER: Multiple Answers (Type 1)
Answer:
x_1=-3, y_1=0
x_2=-2, y_2=-3
Workings:
Substitute equation two into equation one:
3x+x^2+2x-3=-9
x^2+5x+6=0
(x+3)(x+2)=0
This gives:
x_1=-3 OR x_2=-2
Substituting these values into the original equation gives:
y_1=0 OR y_2=-3
(-3, 0) OR (-2, -3)
Marks = 4
Question 4
Solve the simultaneous equations:
y=3x -1\\ 3x^2+2y^2=35ANSWER: Multiple Choice (Type 2)
A: x_1=-1, y_1=-4, x_2=\dfrac{11}{7}, y_2=\dfrac{26}{7}
B: x_1=-1, y_1=-6, x_2=\dfrac{15}{7}, y_2=\dfrac{23}{7}
C: x_1=-1, y_1=-4, x_2=\dfrac{15}{7}, y_2=\dfrac{26}{7}
D: x_1=-1, y_1=-6, x_2=\dfrac{11}{7}, y_2=\dfrac{23}{7}
Answer: A
Workings:
Substitute equation one into equation two:
3x^2+2(3x-1)^2-35=0
21x^2-12x-33=0
7x^2-4x-11=0
(7x-11)(x+1)=0
This gives:
x_1=\dfrac{11}{7} OR x_2=-1
Substituting these values into the original equations gives:
y_1=\dfrac{26}{7} OR y_2=-4
(\dfrac{11}{7}, \dfrac{26}{7}) OR (-1, -4)
Marks = 5
Question 5
By eliminating y from the following equations
y=2-4x\\ 3x^2+xy+11=0show that x^2-2x-11=0.
Hence or otherwise, solve the simultaneous equations, giving your answers
in the form a+b√3, where a and b are integers.
ANSWER: Multiple Choice (Type 1)
A: x_1=7+4\sqrt{3}, y_1 = -3-3\sqrt{3} OR x_2=5-3\sqrt{3}, y_2=-6+3\sqrt{3}
B: x_1=1+2\sqrt{3}, y_1 = -2-8\sqrt{3} OR x_2=1-2\sqrt{3}, y_2=-2+8\sqrt{3}
C: x_1=7+9\sqrt{3}, y_1 = -7-5\sqrt{3} OR x_2=9-5\sqrt{3}, y_2=-5+7\sqrt{3}
D: x_1=8+2\sqrt{3}, y_1 = -7-3\sqrt{3} OR x_2=4-4\sqrt{3}, y_2=-4+2\sqrt{3}
Answer: B
Workings:
Substitute equation one into equation two:
3x^2+x(2-4x)+11=0
-x^2+2x+11=0
x^2-2x-11=0
Substitute into quadratic formula:
x=\dfrac{2\pm \sqrt{48}}{2}
x=\dfrac{2\pm 4\sqrt{3}}{2}
x={1\pm 2\sqrt{3}}
This gives:
x_1=1+2\sqrt{3} OR x_2=1-2\sqrt{3}
Substituting these values into the original equations gives:
y_1=-2-8\sqrt{3} OR y_2=-2+8\sqrt{3}
(1+2\sqrt{3}, -2-8\sqrt{3}) OR (1-2\sqrt{3}, -2+ 8\sqrt{3})
Marks = 7
Question 6 REMAKE
Given the following simultaneous equations
Find the values of x and y
ANSWER: Multiple Choice (Type 1)
A: x=\dfrac{3\sqrt{2}}{2}, \quad y=-\dfrac{3\sqrt{2}}{2}
B: x=\dfrac{2\sqrt{2}}{3}, \quad y=-\dfrac{2\sqrt{2}}{3}
C: x=\dfrac{3\sqrt{2}}{4}, \quad y=-\dfrac{3\sqrt{2}}{4}
D: x=\dfrac{4\sqrt{2}}{3}, \quad y=-\dfrac{4\sqrt{2}}{3}
Answer: D
Workings:
x-y=3\sqrt{2}
So y=x-3\sqrt{2}
Substituting the expression for y into the second equation:
\begin{aligned}x^2+y^2-9 &=0 \\[1.5em] x^2 +(x-3\sqrt{2})(x-3\sqrt{2})-9 &= 0 \\[1.5em] x^2 + x^2-3\sqrt{2}x-3\sqrt{2}x+18-9 &= 0 \\[1.5em] 2x^2-6\sqrt{2}x+9 &=0\end{aligned}Using the quadratic formula the find the value of x:
\begin{aligned}x &=\dfrac{-(-6\sqrt{2}) \pm \sqrt{(-6\sqrt{2})^2 - (4 \times 2 \times 9)}}{2 \times 2} \\[1.5em] &=\dfrac{6\sqrt{2} \pm \sqrt{72 - 72}}{4} \\[1.5em] &= \dfrac{6\sqrt{2}}{4} \\[1.5em] &= \dfrac{3\sqrt{2}}{2}\end{aligned}
Finally, substituting the value of x into the original equation gives the value of y:
\begin{aligned}y &= x-3\sqrt{2} \\[1.5em] y &= \dfrac{3\sqrt{2}}{2}-3\sqrt{2} \\[1.5em] y& =-\dfrac{3\sqrt{2}}{2}\end{aligned}Marks = 6