Question 1

Solve the simultaneous equations:

y=-x+2\\ y=x^2  + 2x – 1

ANSWER: Multiple Answers (Type 1)

Answer:

x_1=-3.79, y_1=5.79

x_2=0.791,, y_2=1.21

Workings:

-x+2=x^2+2x-1

x^2+3x-3=0

Putting into quadratic formula:

x= \dfrac{-3\pm \sqrt{21}}{2}

This gives:

x_1=-3.79 OR x_2=0.791

Substituting these values into original equations gives:

y_1=5.79 OR y_2=1.21

(-3.79, 5.79) OR (0.791, 1.21)

Marks = 4


Question 2

Solve the simultaneous equations:

x^2+y^2=9\\ 2y=x+1

ANSWER: Multiple Answers (Type 1)

Answer:

x_1=-2.85, y_1=-0.927

x_2=2.45, y_2=1.73

Workings:

Substituting equation two into equation one:

x^2+(\dfrac{x+1}{2})^2-9=0

x^2+\dfrac{x^2+2x+1}{4}-9=0

4x^2+x^2+2x+1-36=0

5x^2+2x-35=0

Putting into quadratic formula:

x = \dfrac{-2\pm \sqrt{704}}{10}

This gives:

x_1 = -2.85 OR x_2 = 2.45

Substituting these values into original equations gives:

y_1=-0.927 OR y_2 = 1.73

(-2.85,-0.927) OR (2.45, 1.73)

Marks = 4

 

ALT SOLUTION:

Rearranging equation two gives x=2y-1

Substituting this into equation one gives:

(2y-1)^2+y^2=9

4y^2-2y-2y+1+y^2=9

5y^2-4y-8=0

Using the quadratic formula:

y=\dfrac{-(-4) \pm \sqrt{(-4)^2 - (4 \times 5 \times (-8))}}{2 \times 5}

y=\dfrac{4 \pm \sqrt{176}}{10}

y_1 = 1.73, \quad y_2 = -0.927

Substituting these values of y back into equation two gives:

x_1 = 2.46, \quad x_2 = -2.85


Question 3

Solve the simultaneous equations:

3x+y=-9\\ x^2+2x-3 =y

ANSWER: Multiple Answers (Type 1)

Answer:

x_1=-3, y_1=0

x_2=-2, y_2=-3

Workings:

Substitute equation two into equation one:

3x+x^2+2x-3=-9

x^2+5x+6=0

(x+3)(x+2)=0

This gives:

x_1=-3 OR x_2=-2

Substituting these values into the original equation gives:

y_1=0 OR y_2=-3

(-3, 0) OR (-2, -3)

Marks = 4


Question 4

Solve the simultaneous equations:

y=3x -1\\ 3x^2+2y^2=35

ANSWER: Multiple Choice (Type 2)

A: x_1=-1, y_1=-4, x_2=\dfrac{11}{7}, y_2=\dfrac{26}{7}

B: x_1=-1, y_1=-6, x_2=\dfrac{15}{7}, y_2=\dfrac{23}{7}

C: x_1=-1, y_1=-4, x_2=\dfrac{15}{7}, y_2=\dfrac{26}{7}

D: x_1=-1, y_1=-6, x_2=\dfrac{11}{7}, y_2=\dfrac{23}{7}

Answer: A

Workings:

Substitute equation one into equation two:

3x^2+2(3x-1)^2-35=0

21x^2-12x-33=0

7x^2-4x-11=0

(7x-11)(x+1)=0

This gives:

x_1=\dfrac{11}{7} OR x_2=-1

Substituting these values into the original equations gives:

y_1=\dfrac{26}{7} OR y_2=-4

(\dfrac{11}{7}, \dfrac{26}{7}) OR (-1, -4)

Marks = 5


Question 5

By eliminating y from the following equations

y=2-4x\\ 3x^2+xy+11=0

show that x^2-2x-11=0.

Hence or otherwise, solve the simultaneous equations, giving your answers

in the form a+b√3, where a and b are integers.

ANSWER: Multiple Choice (Type 1)

A: x_1=7+4\sqrt{3},   y_1 = -3-3\sqrt{3}   OR   x_2=5-3\sqrt{3},   y_2=-6+3\sqrt{3}

B: x_1=1+2\sqrt{3},   y_1 = -2-8\sqrt{3}   OR   x_2=1-2\sqrt{3},   y_2=-2+8\sqrt{3}

C: x_1=7+9\sqrt{3},   y_1 = -7-5\sqrt{3}   OR   x_2=9-5\sqrt{3},   y_2=-5+7\sqrt{3}

D: x_1=8+2\sqrt{3},   y_1 = -7-3\sqrt{3}   OR   x_2=4-4\sqrt{3},   y_2=-4+2\sqrt{3}

Answer: B

Workings:

Substitute equation one into equation two:

3x^2+x(2-4x)+11=0

-x^2+2x+11=0

x^2-2x-11=0

Substitute into quadratic formula:

x=\dfrac{2\pm \sqrt{48}}{2}

x=\dfrac{2\pm 4\sqrt{3}}{2}

x={1\pm 2\sqrt{3}}

This gives:

x_1=1+2\sqrt{3} OR x_2=1-2\sqrt{3}

Substituting these values into the original equations gives:

y_1=-2-8\sqrt{3} OR y_2=-2+8\sqrt{3}

(1+2\sqrt{3}, -2-8\sqrt{3}) OR (1-2\sqrt{3}, -2+ 8\sqrt{3})

Marks = 7


Question 6 REMAKE

Given the following simultaneous equations

x-y=3\sqrt{2}
x^2+y^2-9=0

Find the values of x and y

 

ANSWER: Multiple Choice (Type 1)

A: x=\dfrac{3\sqrt{2}}{2}, \quad y=-\dfrac{3\sqrt{2}}{2}

B: x=\dfrac{2\sqrt{2}}{3}, \quad y=-\dfrac{2\sqrt{2}}{3}

C: x=\dfrac{3\sqrt{2}}{4}, \quad y=-\dfrac{3\sqrt{2}}{4}

D: x=\dfrac{4\sqrt{2}}{3}, \quad y=-\dfrac{4\sqrt{2}}{3}

Answer: D

Workings:

x-y=3\sqrt{2}

So y=x-3\sqrt{2}

Substituting the expression for y into the second equation:

\begin{aligned}x^2+y^2-9 &=0 \\[1.5em] x^2 +(x-3\sqrt{2})(x-3\sqrt{2})-9 &= 0 \\[1.5em] x^2 + x^2-3\sqrt{2}x-3\sqrt{2}x+18-9 &= 0 \\[1.5em] 2x^2-6\sqrt{2}x+9 &=0\end{aligned}

Using the quadratic formula the find the value of x:

\begin{aligned}x &=\dfrac{-(-6\sqrt{2}) \pm \sqrt{(-6\sqrt{2})^2 - (4 \times 2 \times 9)}}{2 \times 2} \\[1.5em] &=\dfrac{6\sqrt{2} \pm \sqrt{72 - 72}}{4} \\[1.5em] &= \dfrac{6\sqrt{2}}{4} \\[1.5em] &= \dfrac{3\sqrt{2}}{2}\end{aligned}

 

Finally, substituting the value of x into the original equation gives the value of y:

\begin{aligned}y &= x-3\sqrt{2} \\[1.5em] y &= \dfrac{3\sqrt{2}}{2}-3\sqrt{2} \\[1.5em] y& =-\dfrac{3\sqrt{2}}{2}\end{aligned}

Marks = 6