Question 1

1(a)

Prove that 5(2x - 3) - 2 \equiv 10x - 17

Line 1:  5(2x - 3) - 2 \equiv 10x - 17

Line 2:  [   Missing Line   ]

Line 3:  10x - 17 \equiv 10x - 17

What is the missing Line 2 from the working above?

ANSWER: Multiple Choice (Type 1)

A: 10x - 15 - 2 \equiv 10x - 17

B: 7x - 8 - 2 \equiv 10x - 17

C: 10x - 8 - 2 \equiv 10x - 17

D: 10x + 15 - 2 \equiv 10x - 17

Answer: A

Workings:

Line 1: 5(2x - 3) - 2 \equiv 10x - 17

Line 2: \color{red}10x - 15 - 2 \equiv 10x - 17

Line 3: 10x - 17 \equiv 10x - 17

Marks = 2

 

1(b):

Prove (n-2)^2 + 3 \equiv n^2 - 4n + 7

Line 1: (n-2)^2 + 3 \equiv n^2 -4n + 7

Line 2: [   Missing Line   ]

Line 3: n^2 - 4n + 7 \equiv n^2 - 4n + 7

What is the missing Line 2 from the working above?

ANSWER: Multiple Choice (Type 1)

A: n^2 - 4n + 4 + 3 \equiv n^2 - 4n + 7

B: n^2 - 2n + 2 + 3 \equiv n^2 - 4n + 7

C: n^2 - 4n + 2 + 3 \equiv n^2 - 4n + 7

D: n^2 + 4n - 4 + 3 \equiv n^2 - 4n + 7

Answer: A

Workings:

Line 1: (n-2)^2 + 3 \equiv n^2 -4n + 7

Line 2: \color{red} n^2 - 4n + 4 + 3 \equiv n^2 - 4n + 7

Line 3: n^2 - 4n + 7 \equiv n^2 - 4n + 7

Marks = 2

 

1(c):

Prove (x+1)^2 - x^2 \equiv 2x + 1

Line 1: (x+1)^2 - x^2 \equiv 2x + 1

Line 2: [   Missing Line   ]

Line 3: 2x + 1 \equiv 2x + 1

What is the missing Line 2 from the working above?

ANSWER: Multiple Choice (Type 1)

A: x^2 + x + x + 1 - x^2

B: x^2 + 2x + x + 1 - x^2

C: x^2 + x + x + 2 - x^2

D: x^2 + x + 2x + 2 - x^2

Answer: A

Workings:

Line 1: (x+1)^2 - x^2 \equiv 2x + 1

Line 2: \color{red} x^2 + x + x + 1 - x^2

Line 3: 2x + 1 \equiv 2x + 1

Marks = 2


Question 2

2(a):

Prove 5(3x - 5) - 2(2x + 9) \equiv 11x - 43

Line 1: 5(3x - 5) - 2(2x + 9) \equiv 11x - 43

Line 2: [   Missing Line   ]

Line 3: 11x - 43 \equiv 11x - 43

What is the missing Line 2 from the working above?

ANSWER: Multiple Choice (Type 1)

A: 15x - 4x - 25 - 18 \equiv 11x - 43

B: 15x - 8x - 25 - 11 \equiv 11x - 43

C: 15x - 6x - 20 - 18 \equiv 11x - 43

D: 15x - 7x - 20 - 11 \equiv 11x - 43

Answer: A

Workings:

Line 1: 5(3x - 5) - 2(2x + 9) \equiv 11x - 43

Line 2: \color{red} 15x - 4x - 25 - 18 \equiv 11x - 43

Line 3: 11x - 43 \equiv 11x - 43

Marks = 3

 

2(b):

Prove (n - 2)^2 - (n - 5)^2 \equiv 3(2n - 7)

Line 1: (n - 2)^2 - (n - 5)^2 \equiv 3(2n - 7)

Line 2: n^2 - 4n + 4 - n^2 + 10n - 25 \equiv 3(2n - 7)

Line 3: [   Missing Line   ]

Line 4: 3(2n - 7) \equiv 3(2n - 7)

What is the missing Line 3 from the working above?

ANSWER: Multiple Choice (Type 1)

A: 6n - 21 \equiv 3(2n - 7)

B: 2n^2 + 6n - 21 \equiv 3(2n - 7)

C: -14n - 21 \equiv 3(2n - 7)

D: 6n - 29 \equiv 3(2n - 7)

Answer: A

Workings:

Line 1: (n - 2)^2 - (n - 5)^2 \equiv 3(2n - 7)

Line 2: n^2 - 4n + 4 - n^2 + 10n - 25 \equiv 3(2n - 7)

Line 3: \color{red} 6n - 21 \equiv 3(2n - 7)

Line 4: 3(2n - 7) \equiv 3(2n - 7)

Marks = 3

 

2(c):

Prove (n + 2)^2 - 3(n + 4) \equiv (n + 4)(n - 3) + 4

Line 1: (n + 2)^2 - 3(n + 4) \equiv (n + 4)(n - 3) + 4

Line 2: n^2 + 2n + 2n + 4 - 3n - 12 \equiv (n + 4)(n - 3) + 4

Line 3: [   Missing Line   ]

Line 4: (n + 4)(n - 3) + 4 \equiv (n + 4)(n - 3) + 4

What is the missing Line 3 from the above working?

ANSWER: Multiple Choice (Type 1)

A: n^2 + n - 12 + 4 \equiv (n + 4)(n - 3) + 4

B: n^2 + 4n - 8 + 4 \equiv (n + 4)(n - 3) + 4

C: n^2 + 2n + 8 \equiv (n + 4)(n - 3) + 4

D: n^2 + n - 4 + 12 \equiv (n + 4)(n - 3) + 4

Answer: A

Workings:

Line 1: (n + 2)^2 - 3(n + 4) \equiv (n + 4)(n - 3) + 4

Line 2: n^2 + 2n + 2n + 4 - 3n - 12 \equiv (n + 4)(n - 3) + 4

Line 3: \color{red} n^2 + n - 12 + 4 \equiv (n + 4)(n - 3) + 4

Line 4: (n + 4)(n - 3) + 4 \equiv (n + 4)(n - 3) + 4

Marks = 3

 

2(d):

Prove 3(n + 3)(n - 1) - 3(1 - n) \equiv (3n - 3)(n + 4)

Line 1: 3(n + 3)(n - 1) - 3(1 - n) \equiv (3n - 3)(n + 4)

Line 2: 3(n^2 + 2n - 3) - 3 + 3n \equiv (3n - 3)(n + 4)

Line 3: [   Missing Line   ]

Line 4: (3n - 3)(n + 4) \equiv (3n - 3)(n + 4)

What is the missing Line 3 from the above working?

ANSWER: Multiple Choice (Type 1)

A: 3n^2 + 9n - 12 \equiv (3n - 3)(n + 4)

B: 3n^2 + 5n - 12 \equiv (3n - 3)(n + 4)

C: 3n^2 + 6n - 9 \equiv (3n - 3)(n + 4)

D: 3n^2 + 4n - 9 \equiv (3n - 3)(n + 4)

Answer: A

Workings:

Line 1: 3(n + 3)(n - 1) - 3(1 - n) \equiv (3n - 3)(n + 4)

Line 2: 3(n^2 + 2n - 3) - 3 + 3n \equiv (3n - 3)(n + 4)

Line 3: \color{red} 3n^2 + 9n - 12 \equiv (3n - 3)(n + 4)

Line 4: (3n - 3)(n + 4) \equiv (3n - 3)(n + 4)

Marks = 3


Question 3

3(a):

Prove (3n + 1)(n + 3) - n(3n + 7) \equiv 3(n + 1)

Line 1: (3n + 1)(n + 3) - n(3n + 7) \equiv 3(n + 1)

Line 2: 3n^2 + 9n + n + 3 - 3n^2 - 7n \equiv 3(n + 1)

Line 3: [   Missing Line   ]

Line 4: 3(n + 1) \equiv 3(n + 1)

What is the missing Line 3 from the above working?

ANSWER: Multiple Choice (Type 1)

A: 3n + 3 \equiv 3(n + 1)

B: 3n - 3 \equiv 3(n + 1)

C: -3n - 3 \equiv 3(n + 1)

D: -3n + 3 \equiv 3(n + 1)

Answer: A

Workings:

Line 1: (3n + 1)(n + 3) - n(3n + 7) \equiv 3(n + 1)

Line 2: 3n^2 + 9n + n + 3 - 3n^2 - 7n \equiv 3(n + 1)

Line 3: \color{red} 3n + 3 \equiv 3(n + 1)

Line 4: 3(n + 1) \equiv 3(n + 1)

Marks = 3

 

3(b):

Prove (n + 3)^2 - (3n + 5) \equiv (n + 1)(n + 2) + 3

Line 1: (n + 3)^2 - (3n + 5) \equiv (n + 1)(n + 2) + 3

Line 2: n^2 + 6n + 9 - 3n - 4\equiv (n + 1)(n + 2) + 3

Line 3: [   Missing Line   ]

Line 4: (n + 1)(n + 2) + 3\equiv (n + 1)(n + 2) + 3

What is the missing Line 3 from the above working?

ANSWER: Multiple Choice (Type 1)

A: n^2 + 3n + 5\equiv (n + 1)(n + 2) + 3

B: n^2 - 3n + 5\equiv (n + 1)(n + 2) + 3

C: -n^2 + 3n - 5\equiv (n + 1)(n + 2) + 3

D: -n^2 - 3n - 5\equiv (n + 1)(n + 2) + 3

Answer: A

Workings:

Line 1: (n + 3)^2 - (3n + 5) \equiv (n + 1)(n + 2) + 3

Line 2: n^2 + 6n + 9 - 3n - 4\equiv (n + 1)(n + 2) + 3

Line 3: \color{red} n^2 + 3n + 5\equiv (n + 1)(n + 2) + 3

Line 4: (n + 1)(n + 2) + 3\equiv (n + 1)(n + 2) + 3

Marks = 3

 

3(c):

Prove (n - 3)^2 - (2n + 1) \equiv (n - 4)^2 - 8

Line 1: (n - 3)^2 - (2n + 1) \equiv (n - 4)^2 - 8

Line 2: n^2 - 6n + 9 - 2n - 1 \equiv (n - 4)^2 - 8

Line 3: [   Missing Line   ]

Line 4: (n - 4)^2 - 8\equiv (n - 4)^2 - 8

What is the missing Line 3 from the above working?

ANSWER: Multiple Choice (Type 1)

A: n^2 - 8n + 8 \equiv (n - 4)^2 - 8

B: n^2 - 4n + 4 \equiv (n - 4)^2 - 8

C: n^2 - 2n + 10 \equiv (n - 4)^2 - 8

D: n^2 - 4n + 8 \equiv (n - 4)^2 - 8

Answer: A

Workings:

Line 1: (n - 3)^2 - (2n + 1) \equiv (n - 4)^2 - 8

Line 2: n^2 - 6n + 9 - 2n - 1 \equiv (n - 4)^2 - 8

Line 3: \color{red} n^2 - 8n + 8 \equiv (n - 4)^2 - 8

Line 4: (n - 4)^2 - 8\equiv (n - 4)^2 - 8

Marks = 3

 

3(d):

Prove \dfrac{1}{8}(4n + 1)(n + 8) - \dfrac{1}{8} n(4n + 1) \equiv 4n + 1

Line 1: \dfrac{1}{8}(4n + 1)(n + 8) - \dfrac{1}{8} n(4n + 1) \equiv 4n + 1

Line 2: \dfrac{1}{8}(4n^2 + n + 32n + 8) - \dfrac{1}{8}(4n^2 + n) \equiv 4n + 1

Line 3: [   Missing Line   ]

Line 4: 4n + 1 \equiv 4n + 1

What is the missing Line 3 from the above working?

ANSWER: Multiple Choice (Type 1)

A: (\dfrac{1}{2}n^2 + \dfrac{33}{8}n + 1) - (\dfrac{1}{2}n^2 + \dfrac{n}{8}) \equiv 4n + 1

B: (\dfrac{1}{4}n^2 + \dfrac{33}{4}n + 1) - (\dfrac{1}{4}n^2 + \dfrac{n}{4}) \equiv 4n + 1

C: (\dfrac{1}{4}n^2 + \dfrac{31}{8}n + 1) - (\dfrac{1}{4}n^2 + \dfrac{3n}{8}) \equiv 4n + 1

D: (\dfrac{1}{2}n^2 + \dfrac{33}{4}n + 1) - (\dfrac{1}{2}n^2 + \dfrac{n}{4}) \equiv 4n + 1

Answer: A

Workings:

Line 1: \dfrac{1}{8}(4n + 1)(n + 8) - \dfrac{1}{8} n(4n + 1) \equiv 4n + 1

Line 2: \dfrac{1}{8}(4n^2 + n + 32n + 8) - \dfrac{1}{8}(4n^2 + n) \equiv 4n + 1

Line 3: \color{red} (\dfrac{1}{2}n^2 + \dfrac{33}{8}n + 1) - (\dfrac{1}{2}n^2 + \dfrac{n}{8}) \equiv 4n + 1

Line 4: 4n + 1 \equiv 4n + 1

Marks = 3


Question 4

Prove the product of two even numbers is always even.

Line 1: Let m and n be any integers so that 2m and 2n are both even numbers

Line 2: 2m \times 2n = 4mn

Line 3: [   Missing Line   ]

Line 4: So 4mn is even.

What is the missing Line 3 from the above working?

ANSWER: Multiple Choice (Type 1)

A: 4mn = 2(2mn); any integer multiplied by an even number is even.

B: m\times n is always even.

C: 4mn = (2mn)^2; square numbers are always even

D: 4mn = \sqrt{16m^2n^2}; square roots are always even.

Answer: A

Workings:

Line 1: Let m and n be any integers so that 2m and 2n are both even numbers

Line 2: 2m \times 2n = 4mn

Line 3: \color{red} 4mn = 2(2mn); any integer multiplied by an even number is even.

Line 4: So 4mn is even.

Marks = 2


Question 5

Prove that the product of two odd numbers is always odd.

Line 1: Let m and n be any integers so that 2m + 1 and 2n + 1 are both odd numbers.

Line 2: (2m + 1)(2n + 1) = 4mn + 2m + 2n + 1

Line 3: 4mn + 2m + 2n + 1 = 2(2mn + m + n) + 1

Line 4: [   Missing Line   ]

What is the missing Line 4 from the above working?

ANSWER: Multiple Choice (Type 1)

A: 2(2mn + m + n) is even, so 2(2mn + m + n) + 1 must be odd.

B: 2(2mn + m + n) is even, so 2(2mn + m + n) + 1 must be even.

C: 2(2mn + m + n) is odd, so 2(2mn + m + n) + 1 must be even.

D: 2(2mn + m + n) is odd, so 2(2mn + m + n) + 1 must be odd.

Answer: A

Workings:

Line 1: Let m and n be any integers so that 2m + 1 and 2n + 1 are both odd numbers.

Line 2: (2m + 1)(2n + 1) = 4mn + 2m + 2n + 1

Line 3: 4mn + 2m + 2n + 1 = 2(2mn + m + n) + 1

Line 4: \color{red} 2(2mn + m + n) is even, so \color{red}2(2mn + m + n) + 1 must be odd.

Marks = 2


Question 6

Prove algebraically that the sum of two consecutive numbers is odd.

Line 1: If a number is n, then the next number is n + 1.

Line 2: The sum is therefore n + n + 1 = 2n + 1

Line 3: [   Missing Line   ]

What is the missing Line 3 from the above working?

ANSWER: Multiple Choice (Type 1)

A: 2n is even, so 2n + 1 must be odd

B: 2n is odd, so 2n + 1 must be odd

C: 2n = 0, so 2n + 1 must be odd

D: 2n is negative, so 2n + 1 must be odd

Answer: A

Workings:

Line 1: If a number is n, then the next number is n + 1.

Line 2: The sum is therefore n + n + 1 = 2n + 1

Line 3: \color{red} 2n is even, so \color{red} 2n + 1 must be odd

Marks = 3


Question 7

Prove 6x - (2x + 3)(x + 2) is always negative.

Line 1: [   Missing Line   ]

Line 2: 6x - (2x + 3)(x + 2) \equiv 6x - 2x^2 - 7x - 6

Line 3: 6x - (2x + 3)(x + 2) \equiv -2x^2 - x - 6

Line 4: 6x - (2x + 3)(x + 2) \equiv -(2x^2 + x + 6)

Line 5: (2x^2 + x + 6) is always positive.

Line 6: So multiplying (2x^2 + x + 6) by -1 means answer is always negative.

What is the missing Line 1 from the above working?

ANSWER: Multiple Choice (Type 1)

A: 6x - (2x + 3)(x + 2) \equiv 6x - (2x^2 + 4x + 3x + 6)

B: 6x - (2x + 3)(x + 2) \equiv 6x - (x^2 + 4x + 3x + 9)

C: 6x - (2x + 3)(x + 2) \equiv 6x - (x^2 + 4x + 4x + 12)

D: 6x - (2x + 3)(x + 2) \equiv 6x - (x^2 + 3x + 3x + 6)

Answer: A

Workings:

Line 1: \color{red} 6x - (2x + 3)(x + 2) \equiv 6x - (2x^2 + 4x + 3x + 6)

Line 2: 6x - (2x + 3)(x + 2) \equiv 6x - 2x^2 - 7x - 6

Line 3: 6x - (2x + 3)(x + 2) \equiv -2x^2 - x - 6

Line 4: 6x - (2x + 3)(x + 2) \equiv -(2x^2 + x + 6)

Line 5: (2x^2 + x + 6) is always positive.

Line 6: So multiplying (2x^2 + x + 6) by -1 means answer is always negative.

Marks = 3