Question 1:

 

Question 1(a): [1 mark]

What is the gradient of the line f?

 

Answer type: Multiple choice type 2

A: y = 2x -2

B: y = 4x - 2

C: y = 2x + 4

D: y = 4x + 2

 

ANSWER: C: y = 2x + 4

WORKING: gradient =\dfrac{2}{1} = 2, intercept = 4

 

 

Question 1(b): [1 mark]

What is the gradient of the line g?

 

Answer type: Multiple choice type 2

A: y = 2x + \dfrac{3}{2}

B: y = -2x + \dfrac{3}{2}

C: y = 2x + 3

D: y = -2x + 3

 

ANSWER: D: y = -2x + 3

WORKING: gradient =\dfrac{- 2}{1} = - 2, intercept = 3

 

 

Question 1(c): [1 mark]

What is the gradient of the line h?

 

Answer type: Multiple choice type 2

A: y = x - 2

B: y = x + 2

C: y = - x -2

D: y = - x + 2

 

ANSWER: A: y = x - 2

WORKING: gradient =\dfrac{2}{2} = 1, intercept = -2.

 


 

Question 2(a): [2 marks]

Find the equation of the line AB where,  A=(5,10) , B=(11,22).

Choose the correct answer.

 

Answer type: Multiple choice type 2

A: y = \dfrac{1}{2} x + \dfrac{15}{2}

B: y = 2x + 20

C: y = 2x

D: y = 2

 

ANSWER: C: y = 2x

WORKING:

m =\dfrac{\text{change in} \, y}{\text{change in} \, x} = \dfrac{22 - 10}{11 - 5} = \dfrac{12}{6} = 2.

y = 2x + c

Substituting in values of x and y gives

10 = 2(5) + c

10 = 10 + c

c = 0

y = 2x

 

 

Question 2(b): [2 marks]

Find the equation of the line CD where,  A=(-2,-7) , B=(-14,-11).

Choose the correct answer.

 

Answer type: Multiple choice type 2

A: y = \dfrac{9}{8} x - \dfrac{19}{4}

B: y = 3x - 1

C: y = \dfrac{1}{3} x - \dfrac{19}{3}

D: y = \dfrac{1}{3} x - \dfrac{23}{3}

 

ANSWER: C: y = \dfrac{1}{3} x - \dfrac{19}{3}

WORKING:

m = \dfrac{\text{change in} \, y}{\text{change in} \, x} = \dfrac{-11 - \, - 7}{-14 - \, - 2} = \dfrac{-4}{-12} = \dfrac{1}{3}.

y = \dfrac{1}{3} x + c

Substituting in values of x and y gives

-7 = \dfrac{1}{3} (-2) + c

-7 = - \dfrac{2}{3} + c

c = - \dfrac{19}{3}

y = \dfrac{1}{3} x - \dfrac{19}{3}

 

 


 

Question 3:

In each of the following cases, find the gradient of the straight line by rearranging the equation.

 

Question 3(a): [2 marks]

y - 3 = 4(x - 2)

 

Answer type: Simple text answer

ANSWER: 4

WORKING:

y - 3 = 4(x - 2)

y - 3 = 4x - 8

y = 4x- 8 + 3

y = 4x - 5

m = 4

 

 

Question 3(b): [2 marks]

3y - 2 = 5x + 2

 

Answer type: Fraction

ANSWER: \dfrac{5}{3}

WORKING:

3y - 2 = 5x + 2

3y = 5x + 2 + 2

3y = 5x + 4

y = \dfrac{5}{3}x  + \dfrac{4}{3}

m = \dfrac{5}{3}

 

 

Question 3(c): [2 marks]

\dfrac{2(3 - 5x)}{y} = 3

 

Answer type: Multiple choice type 2

A: - \dfrac{10}{3}

B:  \dfrac{10}{3}

C: - \dfrac{3}{10}

D:  \dfrac{3}{10}

ANSWER:    A: - \dfrac{10}{3}

WORKING:

\dfrac{2(3 - 5x)}{y} = 3

3y = 2(3 - 5x)

3y = 6 - 10x

y = 2 - \dfrac{10}{3} x

m = - \dfrac{10}{3}

 


 

Question 4: [2 marks]

From the table below, find which 2 options out of 6 contain equations that have the same gradients. 

Choose the correct answer below.

 

 

Answer type: Multiple choice type 2

A: 1 and 2

B: 2 and 5

C: 3 and 4

D: 3 and 6

 

ANSWER: C: 3 and 4

WORKING: 

Option 3: y = 4 - 2x can be rearranged to y = -2x+4, so the gradient is -2.

-2x-y = 4 can be rearranged to y = -2x - 4, so the gradient is -2.

 

Option 4: y = 2x + 3 has a gradient of 2.

-2x+y=5 can be rearranged to y = 2x+5, so the gradient is 2.


 

Question 5:

The graph below is a distance time graph for a car, over 10 seconds, during a race.

 

Question 5(a): [2 marks]

Choose the correct equation for the straight line graph.

 

Answer type: Multiple choice type 2

A: y = 25x + 1075

B: y = 12.5x + 1075

C; y = 25x + 1750

D: y = 12.5x + 1750

 

ANSWER: B: y = 12.5x + 1075

WORKING:

m = \dfrac{\text{change in} \, y}{\text{change in} \, x} = \dfrac{25}{2} = 12.5

 

 

Question 5(b): [1 mark]

What does the value of m represent in terms of this car? Choose the correct answer.

 

Answer type: Multiple choice type 2

A: The distance the car travels.

B: The amount of time the car travels for.

C: The acceleration of the car.

D: The speed of the car.

 

ANSWER: D: The speed of the car.

WORKING: m is the change in distance over the change in time.

 


 

Question 6(a): [2 marks]

Two lines EF and GH are parallel.

EF: y = 5x - 2

G = (5,a) ; H = (2a,8)

Find the value of a.

 

Answer type: Simple text answer

ANSWER: a = 3

WORKING:

m = \dfrac{\text{change in} \, y}{\text{change in} \, x} = \dfrac{8 - a}{2a - 5} = 5

8 - a = 5(2a - 5)

8 - a = 10a - 25

11a = 33

a = 3

 

 

Question 6(b): [2 marks]

What is the correct equation of GH?

 

Answer type: Multiple choice type 2

A: y = 5x + 22

B: y = 5x + 28

C: y = 5x - 22

D: y = 5x - 28

 

ANSWER: C: y = 5x - 22

WORKING:

y = 5x + c

3 = 5(5) + c

3 = 25 + c

c = - 22

y = 5x - 22