Question 1: [1 mark]

Define ‘Perpendicular’

 

Answer type: Multiple choice type 2

A: Lines that meet at 90 \degree.

B: Lines that pass through 0.

C: Lines that have the same gradient.

D: Lines that have the same y-intercept.

 

ANSWER: A: Lines that meet at 90 \degree.

 


 

Question 2: (Changed slightly to ‘parallel’ or ‘not parallel’ answers)

For each part (b) to (g), choose whether the lines are parallel to CD, perpendicular to CD, or neither.

 

Question 2(a): [2 marks]

The line CD is defined by the points C(-2,1) and D(10,7).

Choose the correct equation of the line CD.

 

Answer type: Multiple choice type 2

A: y = 2x - 13

B: y = \dfrac{1}{2} x - 2

C: y = \dfrac{3}{4} x - \dfrac{1}{2}

D: y = \dfrac{1}{2} x + 2

 

ANSWER: D: y = \dfrac{1}{2} x + 2

WORKING:

m = \dfrac{\text{change in} \, y}{\text{change in} \, x} = \dfrac{7 - 1}{10 - - 2} = \dfrac{6}{12} = \dfrac{1}{2}

7 = \dfrac{1}{2} \times 10 + c

7 = 5 + c

c = 2

y =\dfrac{1}{2} x + 2

 

 

Question 2(b): [1 mark]

y = - 2x

 

Answer type: Multiple choice type 2

A: Parallel

B: Perpendicular

C: Neither

 

ANSWER: B: Perpendicular

 

 

 

Question 2(c): [1 mark]

y = \dfrac{1}{2}x

 

Answer type: Multiple choice type 2

A: Parallel

B: Perpendicular

C: Neither

 

ANSWER: A: Parallel

 

 

 

Question 2(d): [1 mark]

12y = 6x + 7

 

Answer type: Multiple choice type 2

A: Parallel

B: Perpendicular

C: Neither

 

ANSWER: A: Parallel

 

 

 

Question 2(e): [1 mark]

2y = 2x + 2

 

Answer type: Multiple choice type 2

A: Parallel

B: Perpendicular

C: Neither

 

ANSWER: C: Neither

 

 

Question 2(f): [1 mark]

2(y - 3x) = 5 - 2x

 

Answer type: Multiple choice type 2

A: Parallel

B: Perpendicular

C: Neither

 

ANSWER: C: Neither

 

 

Question 2(g): [1 mark]

0 = \dfrac{2x + y}{2}

 

Answer type: Multiple choice type 2

A: Parallel

B: Perpendicular

C: Neither

 

ANSWER: B: Perpendicular

 


Question 3: [2 marks]

The line A is shown below.

Choose the equation below which is perpendicular to line A.

 

Answer type: Multiple choice type 2

A: y = \dfrac{2}{3} x + 4

B: y = - \dfrac{2}{3} x + 1

C: y = \dfrac{3}{2}x - 1

D: y = 3x

 

ANSWER: B: y = - \dfrac{2}{3} x + 1

WORKING:

The gradient of y = - \dfrac{2}{3} x + 1, - \dfrac{2}{3} is the negative reciprocal of the gradient of line A, which is \dfrac{3}{2}

 


 

Question 4:

A and B are two perpendicular lines with equations:

A: y = mx

B: y = px + 5

 

 

Question 4(a): [2 marks]

Choose the correct equation of line A.

 

Answer type: Multiple choice type 2

A: y = \dfrac{1}{2}x

B: y = - \dfrac{5}{4} x + 5

C: y = - 2x + 5

D: y = \dfrac{1}{2} x + 5

 

ANSWER: A: y = \dfrac{1}{2}x

WORKING:

\text{Gradient of} \, A = \dfrac{\text{change in} \, y}{\text{change in} \, x} = \dfrac{1}{2}

y = \dfrac{1}{2} x

 

Question 4(b): [2 marks]

Choose the correct equation of line B.

 

Answer type: Multiple choice type 2

A: y = \dfrac{1}{2}x

B: y = - \dfrac{5}{4} x + 5

C: y = - 2x + 5

D: y = \dfrac{1}{2} x + 5

 

ANSWER: C: y = - 2x + 5

WORKING:

\text{Gradient of} \, B = \dfrac{\text{change in} \, y}{\text{change in} \, x} = - \dfrac{2}{1} = -2

y = - 2x + 5

 


 

Question 5(a): [2 marks]

Choose the correct equation of the line that passes through (5, 4) and is perpendicular  to y = -3x + 4.

 

Answer type: Multiple choice type 2

A: y = \dfrac{1}{3}x + \dfrac{7}{3}

B: y = \dfrac{1}{3}x + 3

C: y = - \dfrac{1}{3}x + \dfrac{7}{3}

D: y = - \dfrac{1}{3}x + 3

 

ANSWER: A: y = \dfrac{1}{3}x + \dfrac{7}{3}

WORKING:

Perpendicular so m \times - 3 = - 1 ; m = \dfrac{-1}{-3} ; m = \dfrac{1}{3}

Substituting values for x and y:

4 = \dfrac{1}{3} \times 5 + c

c = \dfrac{7}{3}

y = \dfrac{1}{3} + \dfrac{7}{3}

 

 

 

Question 5(b): [2 marks]

Choose the correct equation of the line that passes through (-1, -5) and is perpendicular to y = \dfrac{1}{3}x - 2.

 

Answer type: Multiple choice type 2

A: y = 3x - 2

B: y = 3x - 8

C: y = - 3x - 2

D: y = - 3x - 8

 

ANSWER: D: y = - 3x - 8

WORKING:

Perpendicular so m \times \dfrac{1}{3} = - 1 ; m = -1 \times 3 ; m = - 3

Substituting values for x and y:

- 5 = - 3 \times - 1 + c

c = - 8

y = - 3x - 8

 


 

Question 6(a): [3 marks]

The line A is given as 5y - 2x - 2 = 0.

The line B is perpendicular to A and passes through the point (1,-1)

Choose the correct x and y coordinates of the point of intersection of the two lines.

 

Answer type: Multiple choice type 1

A: x = \dfrac{11}{29}, y = \dfrac{16}{29}

B: x = \dfrac{16}{29}, y = \dfrac{11}{29}

C: x = \dfrac{10}{29}, y = \dfrac{16}{29}

D: x = \dfrac{11}{29}, y = \dfrac{10}{29}

 

ANSWER: A: x = \dfrac{11}{29}, y = \dfrac{16}{29}

WORKING:

Line A:

5y - 2x - 2 = 0

5y = 2x + 2

y = \dfrac{2}{5}x + \dfrac{2}{5}

 

Line B is perpendicular, so the gradient is:

m \times \dfrac{2}{5} = -1

m = - \dfrac{5}{2}

Equation of line B:

y = - \dfrac{5}{2}x + c

-1 = - \dfrac{5}{2} \times 1 + c

c = \dfrac{3}{2}

y = - \dfrac{5}{2}x + \dfrac{3}{2}

 

So we have:

y = \dfrac{2}{5} x + \dfrac{2}{5} ,

y = - \dfrac{5}{2}x + \dfrac{3}{2};

\dfrac{2}{5} x + \dfrac{2}{5}  = - \dfrac{5}{2}x + \dfrac{3}{2}

\dfrac{29}{10} x = \dfrac{11}{10} 

29 x = 11

x = \dfrac{11}{29}

Substituting this value back in to find y:

y = - \dfrac{5}{2}x + \dfrac{3}{2}

y = - \dfrac{5}{2} \times \dfrac{11}{29} + \dfrac{3}{2}

y = - \dfrac{55}{58} + \dfrac{3}{2}

y = \dfrac{16}{29}

Point of intersection is \bigg( \dfrac{11}{29}, \dfrac{16}{29} \bigg)

 

 

Question 6(b): [2 marks]

A third line, C, is perpendicular to B and has y-intercept of -3. Choose the correct equation of C.

 

Answer type: Multiple choice type 2

A: y = - \dfrac{5}{2}x + 3

B: y = - \dfrac{5}{2}x - 3

C: y = \dfrac{2}{5}x + 3

D: y = \dfrac{2}{5}x - 3

 

ANSWER: D: y = \dfrac{2}{5}x - 3

WORKING:

Has the same gradient as A, m = \dfrac{2}{5}.

Has a y – intercept of - 3, c = -3.

 

y = \dfrac{2}{5} x - 3