Question 1: [1 mark]

Choose the correct definition for the turning point of a quadratic graph.

 

Answer type: Multiple choice type 1

A: The turning point of a quadratic graph is where the gradient is equal to 0.

B: The turning point of a quadratic graph is where the graph crosses the x axis.

C: The turning point of a quadratic graph is always the minimum point.

D: The turning point of a quadratic graph is always (0,0).

 

ANSWER:    A: The turning point of a quadratic graph is where the gradient is equal to 0.

 

 


 

Question 2: [2 marks]

Choose the correct turning points for the following graph.

 

Answer type: Multiple choice type 1

A: (-2,2) and (0,-2)

B: (2,-2) and (0,-2)

C: (-2,2) and (-2,0)

D: (2,-2) and (-2,0)

 

ANSWER:  A: (-2,2) and (0,-2)

WORKING:

The turning points of a quadratic graph is where the gradient is equal to 0.

 


 

Question 3: [2 marks]

Choose the correct turning points for the following graphs.

 

Answer type: Multiple choice type 1

A: A: \, (-2.5, -0.5) and B: \, (2,-2)

B: A: \, (-0.5, -2.5) and B: \, (-2,2)

C: A: \, (2, -2) and B: \, (-2.5, -0.5)

D: A: \, (-2, 2) and B: \, (-0.5, -2.5)

 

ANSWER: A: A: \, (-2.5, -0.5) and B: \, (2,-2)

WORKING:

The turning points of quadratic graphs is where the gradient is equal to 0.

 


 

Question 4:

Find the turning point of the following equations by completing the square.

 

Question 4(a): [2 marks]

y = x^2 + 4x + 7

 

Answer type: Multiple choice type 1

A: (-2,3)

B: (2,3)

C: (3, -2)

D: (3,2)

 

ANSWER: A: (-2,3)

WORKING:

y = (x+2)^2 + 3

x = -2, \, y = 3

 

 

Question 4(b): [2 marks]

y = 3x^2 + 36x + 99

 

Answer type: Multiple choice type 1

A: (-6,-9)

B: (6,- 9)

C: (6,-3)

D: (-6,-3)

 

ANSWER: A: (-6,-9)

WORKING:

y = 3(x^2 + 12x + 33)

= 3[(x+6)^2 - 3] = 3(x+6)^2 - 9

x = -6, \, y = -9

 

 

Question 4(c): [2 marks]

y = 2x^2 + 7x - 10

 

Answer type: Multiple choice type 1

A: \bigg( - \dfrac{7}{4}, - \dfrac{129}{8} \bigg)

B: \bigg( \dfrac{7}{4},  \dfrac{129}{8} \bigg)

C: \bigg( - \dfrac{129}{8}, - \dfrac{7}{4} \bigg)

D: \bigg( \dfrac{129}{8},  \dfrac{7}{4} \bigg)

 

ANSWER: A: \bigg( - \dfrac{7}{4}, - \dfrac{129}{8} \bigg)

WORKING:

y = 2 \bigg(x^2 + \dfrac{7}{2} - 5 \bigg)

= 2 \bigg[ \bigg(x + \dfrac{7}{4} \bigg) ^2 - \dfrac{129}{16} \bigg]

= 2 \bigg(x + \dfrac{7}{4} \bigg) ^2 - \dfrac{129}{8}

x = -\dfrac{7}{4}, \, y = - \dfrac{129}{8}

 


 

Question 5:

Choose the correct turning points for the following graphs.

 

Question 5(a): [1 mark]

 

Answer type: Multiple choice type 1

A: (-1,4)

B: (0,0)

C: (-2,0)

D: (4,-1)

 

ANSWER:  A: (-1,4)

WORKING:

The turning point of a quadratic graph is where the gradient is equal to 0

 

 

 

Question 5(b): [1 mark]

 

Answer type: Multiple choice type 1

A: (1,-3)

B: (0,-0.75)

C: (-3,1)

D: (0, 0.75)

 

ANSWER:  A: (1,-3)

WORKING:

The turning point of a quadratic graph is where the gradient is equal to 0

 


 

Question 6:

Find the turning point of the following equations by completing the square.

 

Question 6(a): [2 marks]

y = x^2 + 16x + 49

 

Answer type: Multiple choice type 1

A: (-8,-15)

B: (8,-15)

C: (8,113)

D: (-8,113)

 

ANSWER: A: (-8,-15)

WORKING:

y = (x+8)^2 - 15

x = -8, \, y = -15

 

 

Question 6(b): [2 marks]

y = 2x^2 + 12x - 4

 

Answer type: Multiple choice type 1

A: (-3,-22)

B: (3, -22)

C: (-3,-11)

D: (-3,-4)

 

ANSWER: A: (-3,-22)

WORKING:

y = 2(x^2 + 6x - 2)

= 2[(x+3)^2 - 11]

= 2(x+3)^2 - 22

x = -3, \, y = -22

 

 

Question 6(c): [2 marks]

y = 5x^2 + 18x - 7

 

Answer type: Multiple choice type 1

A: \bigg( - \dfrac{9}{5}, - \dfrac{116}{5} \bigg)

B: \bigg( \dfrac{9}{5}, - \dfrac{116}{5} \bigg)

C: \bigg( - \dfrac{9}{5}, - \dfrac{116}{25} \bigg)

D: \bigg( - \dfrac{9}{5}, - \dfrac{46}{5} \bigg)

 

ANSWER: A: \bigg( - \dfrac{9}{5}, - \dfrac{116}{5} \bigg)

WORKING:

y = 5 \bigg( x^2 + \dfrac{18}{5}x - \dfrac{7}{5} \bigg)

= 5 \bigg[ \bigg(x+\dfrac{9}{5} \bigg)^2 - \dfrac{116}{25} \bigg]

= 5 \bigg(x + \dfrac{9}{5} \bigg)^2 - \dfrac{116}{5}

x = - \dfrac{9}{5} , \, y = - \dfrac{116}{5}