Question 1:

Choose the correct answer for each of the following calculations:

 

Question 1(a): [2 marks]

\cos(30 \degree) + \sin (60 \degree)

 

Answer type: Multiple choice type 1

A: \sqrt{3}

B: 1

C: 2

D: 2\sqrt{3}

 

ANSWER: A: \sqrt{3}

WORKING:

\dfrac{\sqrt{3}}{2} + \dfrac{\sqrt{3}}{2} = \sqrt{3}

 

 

Question 1(b): [2 marks]

12 \cos (60 \degree) - 8 \sin(30 \degree)

 

Answer type: Multiple choice type 1

A: 2

B: 1

C: 2\sqrt{3}

D: \sqrt{3}

 

ANSWER: A: 2

WORKING:

12 \bigg(\dfrac{1}{2} \bigg) - 8 \bigg(\dfrac{1}{2} \bigg) = 6 - 4 = 2

 

 

Question 1(c): [2 marks]

\dfrac{\tan(45 \degree)}{\sin(30 \degree)} \times 10 \tan(60 \degree)

 

Answer type: Multiple choice type 1

A: 20 \sqrt{3}

B: 10 \sqrt{2}

C: 5\sqrt{3}

D: 2\sqrt{3}

 

ANSWER: A: 20 \sqrt{3}

WORKING:

\dfrac{1}{0.5} \times 10 \times \sqrt{3} = 20 \sqrt{3}

 

 

Question 1(d): [2 marks]

\tan(30 \degree) + \sin(60 \degree)

 

Answer type: Multiple choice type 1

A: \dfrac{5\sqrt{3}}{6}

B: \dfrac{1}{2} + \sqrt{3}

C: \dfrac{6\sqrt{3}}{5}

D: 2

 

ANSWER: A: \dfrac{5\sqrt{3}}{6}

WORKING:

\dfrac{1}{\sqrt{3}} + \dfrac{\sqrt{3}}{2} = \dfrac{2}{2\sqrt{3}} + \dfrac{3}{2\sqrt{3}} = \dfrac{5}{2\sqrt{3}} = \dfrac{5\sqrt{3}}{6}

 


 

Question 2:

Choose the correct answer for each of the following calculations:

 

Question 2(a): [2 marks]

\tan (30 \degree) + \sin(30 \degree)

 

Answer type: Multiple choice type 1

A: \dfrac{3+2\sqrt{3}}{6}

B: 2 - \sqrt{3}

C: 1

D: 2

 

ANSWER: A: \dfrac{3+2\sqrt{3}}{6}

WORKING:

\dfrac{1}{\sqrt{3}} + \dfrac{1}{2} = \dfrac{2}{2\sqrt{3}} + \dfrac{\sqrt{3}}{2\sqrt{3}} = \dfrac{2+\sqrt{3}}{2\sqrt{3}} = \dfrac{3+2\sqrt{3}}{6}

 

 

Question 2(b): [3 marks]

\dfrac{\tan (45 \degree) + \sin(30 \degree)}{\tan (60 \degree)} \times \cos (45 \degree)

 

Answer type: Multiple choice type 1

A: \dfrac{\sqrt{6}}{4}

B: \dfrac{\sqrt{3}+\sqrt{2}}{6}

C: \dfrac{\sqrt{6}}{2}

D: \dfrac{2\sqrt{6}+3\sqrt{2}}{12}

 

ANSWER: A: \dfrac{\sqrt{6}}{4}

WORKING:

\dfrac{\bigg(1+\dfrac{1}{2} \bigg)}{\sqrt{3}} \times \dfrac{\sqrt{2}}{2} = \dfrac{\sqrt{3}}{2} \times \dfrac{\sqrt{2}}{2} = \dfrac{\sqrt{6}}{4}

 


 

Question 3: [2 marks]

ABC is a  right-angled triangle.

\angle BAC = 30 \degree

AB = 16 cm

Find the exact value of x, and choose the correct answer from below.

 

Answer type: Multiple choice type 1

A: 8 cm

B: 8\sqrt{3} cm

C: 16 \sqrt{3}

D: \dfrac{16 \sqrt{3}}{3} cm

 

ANSWER: A: 8 cm

WORKING:

x = 16 \sin(30 \degree) = 16 \times \dfrac{1}{2} = 8 cm

 


 

Question 4: [2 marks]

DEF is a  right-angled triangle.

DE = EF

\angle EDF = 45 \degree

 

Find the exact value of x, and choose the correct answer from below.

 

Answer type: Multiple choice type 1

A: 5\sqrt{2} cm

B: 5\sqrt{3} cm

C: 5 cm

D: \dfrac{\sqrt{2}}{2} cm

 

ANSWER: A: 5\sqrt{2}

WORKING:

x = 10 \times \cos(45 \degree) = 10 \times \dfrac{\sqrt{2}}{2} =  5\sqrt{2}

 


 

Question 5: [2 marks]

ABC is a  right-angled triangle.

\angle ABC = 30 \degree

CB = 12 cm

Find the exact value of x, and choose the correct answer from below.

 

Answer type: Multiple choice type 1

A: 4\sqrt{3} cm

B: 6\sqrt{3} cm

C: 6

D: 6\sqrt{2}

 

ANSWER: A: 4\sqrt{3} cm

WORKING:

x = 12 \tan(30 \degree) = 12 \times \dfrac{\sqrt{3}}{3} = 4\sqrt{3}

 


 

Question 6: [4 marks]

Below is a parallelogram.

AC = x

AB = x+3

The area of the parallelogram is 20 \sqrt{3}.

Find the value of x.

 

Answer type: Simple text answer

ANSWER: 5 cm

WORKING:

Form a right angled triangle with a line coming down from C.

\text{Height } = x \times \sin(60) = \dfrac{x\sqrt{3}}{2}

\text{Area } = \text{base } \times \text{height } = (x+3) \times \dfrac{x\sqrt{3}}{2} = \dfrac{x^2\sqrt{3}}{2} + \dfrac{3x\sqrt{3}}{2}

\dfrac{x^2\sqrt{3}}{2} + \dfrac{3x\sqrt{3}}{2} = 20\sqrt{3}

Which can be rearranged to be

x^2+3x-40=0

Use the quadratic formula to find

x = \dfrac{-3 \pm \sqrt{169}}{2} = 5 \text{ or } -8

Since x is a physical length, it must be positive, so x = 5 cm.