Question 1: [4 marks]

Consider the following triangle

BAC=30°\angle BAC = 30 \degree

ABC=80°\angle ABC = 80 \degree

Find the length of xx, to 22 decimal places.

 

Answer type: Simple text answer

ANSWER: 2.54 cm

WORKING:

xsin(30)=5sin(80)\dfrac{x}{\sin(30)} = \dfrac{5}{\sin(80)}

x=5sin(30)sin(80)=2.54x = \dfrac{5\sin(30)}{\sin(80)} = 2.54 cm (22 dp)

 


 

Question 2: [4 marks]

Consider the following triangle.

ABC=33.1°\angle ABC = 33.1 \degree

Calculate the angle BCABCA, to 22 decimal places.

 

Answer type: Simple text answer

ANSWER: 22.96 °\degree

WORKING:

sin(BCA)5=sin(33.1)7\dfrac{\sin(BCA)}{5} = \dfrac{\sin(33.1)}{7}

sin(BCA)=5sin(33.1)7\sin(BCA) = \dfrac{5\sin(33.1)}{7}

BCA=sin1(5sin(33.1)7)=22.96BCA = \sin^{-1} \bigg(\dfrac{5\sin(33.1)}{7} \bigg) = 22.96 (22 dp)

 


 

Question 3: [4 marks]

The diagram below shows a triangle.

BAC=15°\angle BAC = 15 \degree

xx is an obtuse angle.

Work out the size of angle xx, to 33 significant figures.

 

Answer type: Simple text answer

ANSWER: 154 °\degree

WORKING:

sin(x)12=sin(15)7\dfrac{\sin(x)}{12} = \dfrac{\sin(15)}{7}

sin(x)=12sin(15)7=0.4437...\sin(x) = \dfrac{12\sin(15)}{7} = 0.4437...

x=sin1(0.4437...)=26.3395...x = \sin^{-1}(0.4437...) = 26.3395...

Since xx is obtuse,

x=18026.3396...=154°x = 180 - 26.3396... = 154 \degree (33 sf)

 


 

Question 4:

The diagram below shows a triangle.

MO=12MO = 12 cm

LM=6.5LM = 6.5 cm

OLM=52°\angle OLM = 52 \degree

 

Question 4(a): [3 marks]

Find the angle MOLMOL, to 11 decimal place.

 

Answer type: Simple text answer

ANSWER: 25.3 °\degree

WORKING:

sin(MOL)6.5=sin(52)12\dfrac{\sin(MOL)}{6.5} = \dfrac{\sin(52)}{12}

sin(MOL)=6.5sin(52)12\sin(MOL) = \dfrac{6.5 \sin(52)}{12}

MOL=sin1(6.5sin(52)12)=25.3°MOL = \sin^{-1} \bigg(\dfrac{6.5 \sin(52)}{12} \bigg) = 25.3 \degree

 

 

Question 4(b): [4 marks]

Find the length LOLO using the sine rule, to 11 decimal place.

 

Answer type: Simple text answer

ANSWER: 14.9 cm

WORKING:

LMO=102.7°\angle LMO = 102.7 \degree

LOsin(102.7)=12sin(52)\dfrac{LO}{\sin(102.7)} = \dfrac{12}{\sin(52)}

LO=12sin(102.7)sin(52)=14.9LO = \dfrac{12 \sin(102.7)}{\sin(52)} = 14.9 cm

 


 

Question 5:

The diagram below shows a triangle with angles xx, 50°50 \degree and 2x352x-35.

 

Question 5(a): [1 mark]

Work out the value of xx.

 

Answer type: Simple text answer

ANSWER: x = 55

WORKING:

x+(2x35)+50=180x + (2x-35) + 50 = 180

3x+15=1803x+15 = 180

x=55x = 55

 

 

Question 5(b): [4 marks]

Calculate the length BCBC, to 22 decimal places.

 

Answer type: Simple text answer

ANSWER: 14.15 cm

WORKING:

BAC=2(55)35=75°\angle BAC = 2(55) - 35 = 75 \degree

sin(55)12=sin(75)BC\dfrac{\sin(55)}{12} = \dfrac{\sin(75)}{BC}

BC=12sin(75)sin(55)=14.15BC = \dfrac{12 \sin(75)}{\sin(55)} = 14.15 (22 dp)

 


 

Question 6:

In the diagram,

AD=CD=6AD = CD = 6 cm

ACD=40°\angle ACD = 40 \degree

ABD=45°\angle ABD = 45 \degree

 

Question 6(a): [3 marks]

Calculate the length ACAC, to 22 significant figures.

 

Answer type: Simple text answer

ANSWER: 9.2 cm

WORKING:

ADC=100°\angle ADC = 100 \degree, since the triangle ADCADC is isosceles.

ACsin(100)=6sin(40)\dfrac{AC}{\sin(100)} = \dfrac{6}{\sin(40)}

AC=6sin(100)sin(40)=9.2AC = \dfrac{6 \sin(100)}{\sin(40)} = 9.2 m (22 sf)

 

 

Question 6(b): [4 marks]

Calculate the length BDBD, to 22 decimal places.

 

Answer type: Simple text answer

ANSWER: 6.95 cm

WORKING:

ADB=180100=80°\angle ADB = 180 - 100 = 80 \degree

BAD=1808045=55°\angle BAD = 180 - 80 - 45 = 55 \degree

BDsin(55)=6sin(45)\dfrac{BD}{\sin(55)} = \dfrac{6}{\sin(45)}

BD=6sin(55)sin(45)=6.95BD = \dfrac{6 \sin(55)}{\sin(45)} = 6.95 m (22 dp)