Question 1

Which lines on the graph below show the vectors:

\begin{pmatrix}1\\3\end{pmatrix} from A

\begin{pmatrix}2\\-1\end{pmatrix} from B

\begin{pmatrix}-4\\-5\end{pmatrix} from C

ANSWER: Multiple Choice (Type 2)

A: D, H, F

B: D, J, F

C: E, J, G

D: E, H, G

Answer: A

Workings:

The vector from point A travels 1 to the right and 3 up, giving vector D.

The vector from point B travels 2 to the right and 1 down, giving vector H.

The vector from point C travels 4 to the left and 5 down, giving vector F.

Marks = 3


Question 2

Given the vectors:

\textbf{a} = \begin{pmatrix}2\\3\end{pmatrix} \textbf{b} = \begin{pmatrix}1\\5\end{pmatrix}

Which lines on the graph below show the vectors:

2\textbf{a}\\ \textbf{a} + \textbf{b}\\ 4\textbf{a} - 2\textbf{b}

ANSWER: Multiple Choice (Type 1):

A: B, C, E

B: A, D, F

C: C, D, F

D: A, B, E

Answer: A

Workings:

2\textbf{a} is shown by vector C.

\textbf{a} + \textbf{b} is shown by vector B.

4\textbf{a} - 2\textbf{b} is shown by vector E.

Marks = 3


Question 3

Given the following vectors:

\textbf{a} = \begin{pmatrix}2\\5\end{pmatrix}             \textbf{b} = \begin{pmatrix}10\\-4\end{pmatrix}             \textbf{c} = \begin{pmatrix}-3\\-7\end{pmatrix}

Write the following expressions as a single column vector;

3(a):

\textbf{a} + \textbf{b}

ANSWER: Multiple Choice (Type 2)

A: \begin{pmatrix}12\\1\end{pmatrix}

B: \begin{pmatrix}10\\7\end{pmatrix}

C: \begin{pmatrix}4\\9\end{pmatrix}

D: \begin{pmatrix}8\\1\end{pmatrix}

Answer: A

Workings:

\begin{pmatrix}2\\5\end{pmatrix} + \begin{pmatrix}10\\-4\end{pmatrix} = \begin{pmatrix}2+10\\5-4\end{pmatrix} = \begin{pmatrix}12\\1\end{pmatrix}

Marks = 1

 

3(b):

\textbf{c} + \textbf{b}

ANSWER: Multiple Choice (Type 2)

A: \begin{pmatrix}7\\-11\end{pmatrix}

B: \begin{pmatrix}5\\-8\end{pmatrix}

C: \begin{pmatrix}10\\-5\end{pmatrix}

D: \begin{pmatrix}6\\-2\end{pmatrix}

Answer: A

Workings:

\begin{pmatrix}-3\\-7\end{pmatrix}+\begin{pmatrix}10\\-4\end{pmatrix}=\begin{pmatrix}-3+10\\-7-4\end{pmatrix}=\begin{pmatrix}7\\-11\end{pmatrix}

Marks = 1

 

3(c):

-\textbf{c}-\textbf{a}

ANSWER: Multiple Choice (Type 2)

A: \begin{pmatrix}1\\2\end{pmatrix}

B: \begin{pmatrix}4\\3\end{pmatrix}

C: \begin{pmatrix} -3\\-2\end{pmatrix}

D: \begin{pmatrix}-2\\-4\end{pmatrix}

Answer: A

Workings:

-\begin{pmatrix}-3\\-7\end{pmatrix}-\begin{pmatrix}2\\5\end{pmatrix}=\begin{pmatrix}3-2\\7-5\end{pmatrix}=\begin{pmatrix}1\\2\end{pmatrix}

Marks = 1


Question 4

Given the following vectors

\textbf{a} = \begin{pmatrix}3\\1\end{pmatrix}          \textbf{b} = \begin{pmatrix}5\\-2\end{pmatrix}          \textbf{c} = \begin{pmatrix}2\\7\end{pmatrix}

Write the following expressions as a single column vector;

4(a):

\textbf{a} + \textbf{b}

ANSWER: Multiple Choice (Type 2)

A: \begin{pmatrix}8\\-1\end{pmatrix}

B: \begin{pmatrix}7\\5\end{pmatrix}

C: \begin{pmatrix}5\\8\end{pmatrix}

D: \begin{pmatrix}6\\2\end{pmatrix}

Answer: A

Workings:

\begin{pmatrix}3\\1\end{pmatrix}+\begin{pmatrix}5\\-2\end{pmatrix}=\begin{pmatrix}8\\-1\end{pmatrix}

Marks = 1

 

4(b):

2\textbf{c} + \textbf{b}

ANSWER: Multiple Choice (Type 2)

A: \begin{pmatrix}9\\12\end{pmatrix}

B: \begin{pmatrix}11\\0\end{pmatrix}

C: \begin{pmatrix}8\\9\end{pmatrix}

D: \begin{pmatrix}13\\-3\end{pmatrix}[/latex]

Answer: A

Workings:

\begin{pmatrix}4\\14\end{pmatrix}+\begin{pmatrix}5\\-2\end{pmatrix}=\begin{pmatrix}9\\12\end{pmatrix}

Marks = 1

 

4(c):

3\textbf{c} - 2\textbf{b}

ANSWER: Multiple Choice (Type 2)

A: \begin{pmatrix}-4\\25\end{pmatrix}

B: \begin{pmatrix}0\\19\end{pmatrix}

C: \begin{pmatrix}9\\-8\end{pmatrix}

D: \begin{pmatrix}5\\-4\end{pmatrix}

Answer: A

Workings:

\begin{pmatrix}6\\21\end{pmatrix}-\begin{pmatrix}10\\-4\end{pmatrix}=\begin{pmatrix}-4\\25\end{pmatrix}

Marks = 1

 

4(d):

2\textbf{a} - \textbf{c}

ANSWER: Multiple choice (Type 2)

A: \begin{pmatrix}4\\-5\end{pmatrix}

B: \begin{pmatrix}1\\4\end{pmatrix}

C: \begin{pmatrix}8\\-11\end{pmatrix}

D: \begin{pmatrix}7\\-5\end{pmatrix}

Answer: A

Workings:

\begin{pmatrix}6\\2\end{pmatrix}-\begin{pmatrix}2\\7\end{pmatrix}=\begin{pmatrix}4\\-5\end{pmatrix}

Marks = 1


Question 5

Given the following vectors:

\textbf{a} = \begin{pmatrix}5\\-1\end{pmatrix}          \textbf{b} = \begin{pmatrix}8\\-4\end{pmatrix}          \textbf{c} = \begin{pmatrix}1\\5\end{pmatrix}

Write the following vectors as a single column vector;

5(a):

\textbf{a} - \textbf{b}

ANSWER: Multiple Choice (Type 2)

A: \begin{pmatrix}-3\\3\end{pmatrix}

B: \begin{pmatrix}4\\-6\end{pmatrix}

C: \begin{pmatrix}7\\-9\end{pmatrix}

D: \begin{pmatrix}3\\-5\end{pmatrix}

Answer: A

Workings:

\begin{pmatrix}5\\-1\end{pmatrix}-\begin{pmatrix}8\\-4\end{pmatrix}-\begin{pmatrix}5\\-1\end{pmatrix}=\begin{pmatrix}5\\7\end{pmatrix}

Marks = 1

 

5(b):

2\textbf{c} +\textbf{b} - \textbf{a}

ANSWER: Multiple Choice (Type 2)

A: \begin{pmatrix}5\\7\end{pmatrix}

B: \begin{pmatrix}3\\7\end{pmatrix}

C: \begin{pmatrix}20\\-14\end{pmatrix}

D: \begin{pmatrix}-1\\13\end{pmatrix}

Answer: A

Workings:

\begin{pmatrix}2\\10\end{pmatrix}+\begin{pmatrix}8\\-4\end{pmatrix}-\begin{pmatrix}5\\-1\end{pmatrix}=\begin{pmatrix}5\\7\end{pmatrix}

Marks = 1

 

5(c):

3\textbf{c} + \textbf{b}

ANSWER: Multiple Choice (Type 2)

A: \begin{pmatrix}11\\11\end{pmatrix}

B: \begin{pmatrix}16\\2\end{pmatrix}

C: \begin{pmatrix}29\\-13\end{pmatrix}

D: \begin{pmatrix}25\\-7\end{pmatrix}

Answer: A

Workings:

\begin{pmatrix}3\\15\end{pmatrix}+\begin{pmatrix}8\\-4\end{pmatrix}=\begin{pmatrix}11\\11\end{pmatrix}

Marks = 1

 

5(d):

2\textbf{a}-\dfrac{1}{2}\textbf{b}

ANSWER: Multiple Choice (Type 2)

A: \begin{pmatrix}6\\0\end{pmatrix}

B: \begin{pmatrix}15\\-11\end{pmatrix}

C: \begin{pmatrix}-1\\9\end{pmatrix}

D: \begin{pmatrix}13\\-7\end{pmatrix}

Answer: A

Workings:

\begin{pmatrix}10\\-2\end{pmatrix}-\begin{pmatrix}4\\-2\end{pmatrix}=\begin{pmatrix}6\\0\end{pmatrix}

Marks = 1


Question 6

Three vectors are listed below with some numbers missing.

\textbf{a} = \begin{pmatrix}3\\2\end{pmatrix}          \textbf{b} = \begin{pmatrix}x\\y\end{pmatrix}          \textbf{c} = \begin{pmatrix}1\\z\end{pmatrix}

Use the following calculations.

\textbf{a} + \textbf{b} = \begin{pmatrix}3\\0\end{pmatrix}\\ 2\textbf{c} + \textbf{b} = \begin{pmatrix}2\\2\end{pmatrix}

Find the value of x, y and z.

ANSWER: Multiple Answers (Type 1)

Answer: x = 0, y = -2, z = 2

Workings:

\begin{pmatrix}3\\2\end{pmatrix}+\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}3\\0\end{pmatrix}\\

x=0, y=-2

\begin{pmatrix}2\\2z\end{pmatrix}+\begin{pmatrix}0\\-2\end{pmatrix}=\begin{pmatrix}2\\2\end{pmatrix}

z=2

Marks = 2