Question 1

KLM is a scalene triangle.

Point P is half way along \overrightarrow{ML}.

\overrightarrow{MK} = \textbf{2a},

\overrightarrow{KL} = \textbf{b}.

1(a):

Write the vector \overrightarrow{ML} in terms of \textbf{a} and \textbf{b}.

ANSWER: Multiple Choice (Type 1)

A: -\textbf{b} + \textbf{a}

B: 2\textbf{a} + 2\textbf{b}

C: \textbf{b} - 2\textbf{a}

D: 2\textbf{a} + \textbf{b}

Answer: D

Workings:

The vector of \overrightarrow{ML} requires a movement of 2\textbf{a} followed by a movement of \textbf{b}.

Marks = 1

 

1(b):

Find \overrightarrow{MP} in terms of \textbf{a} and \textbf{b}.

ANSWER: Multiple Choice (Type 1)

A: \textbf{a} + \dfrac{1}{2}\textbf{b}

B: 2\textbf{a} + 2\textbf{b}

C: \textbf{a} + \textbf{b}

D: \dfrac{1}{2}\textbf{a} + \textbf{b}

Answer: A

Workings:

\dfrac{1}{2}(2\textbf{a} + \textbf{b}) = \textbf{a} + \dfrac{\textbf{b}}{2}

Marks = 1

 

1(c):

A new point N is to the right of L.

\overrightarrow{MN} is 4 times the length of \overrightarrow{MP}.

Write \overrightarrow{MN} as a column vector.

ANSWER: Multiple Choice (Type 2)

A: 2\begin{pmatrix}2\textbf{a}\\\textbf{b}\end{pmatrix}

B: \begin{pmatrix}2\textbf{a}\\\textbf{b}\end{pmatrix}

C: 2\begin{pmatrix}\textbf{a}\\2\textbf{b}\end{pmatrix}

D: 2\begin{pmatrix}4\textbf{a}\\2\textbf{b}\end{pmatrix}

Answer: A

Workings:

4\begin{pmatrix}\textbf{a}\\\dfrac{\textbf{b}}{2}\end{pmatrix} = \begin{pmatrix}4\textbf{a}\\2\textbf{b}\end{pmatrix}\\

= 2\begin{pmatrix}2\textbf{a}\\\textbf{b}\end{pmatrix} = 2 \overrightarrow{ML}

Marks = 1


Question 2

EFG is a scalene triangle.

\overrightarrow{EG} = \textbf{a} - 5\textbf{b},

\overrightarrow{EF} = 3\textbf{a} + 4\textbf{b}.

\overrightarrow{GH}, not shown, is 3 times the length of and parallel to \overrightarrow{GF}.

Find \overrightarrow{GH} in terms of \textbf{a} and \textbf{b}.

ANSWER: Multiple Choice (Type 2)

A: 6\textbf{a} + 27\textbf{b}

B: 5\textbf{a} + 24\textbf{b}

C: 4\textbf{a} + 21\textbf{b}

D: 3\textbf{a} + 18\textbf{b}

Answer: A

Workings:

\overrightarrow{GF} = 3\textbf{a} - \textbf{a} + 5\textbf{b} + 4\textbf{b}

\overrightarrow{GF} = 2\textbf{a} + 9\textbf{b}

\overrightarrow{GH} = 3(2\textbf{a} + 9\textbf{b}) = 6\textbf{a} + 27\textbf{b}

Marks = 3


Question 3

ABCD is a rhombus. Opposite sides are parallel.

\overrightarrow{BE} is an extension of \overrightarrow{AB}, such that AB : BE = 4 : 3

The point F is halfway along \overrightarrow{CD}

Find \overrightarrow{FE} in terms of \textbf{a} and \textbf{b}.

ANSWER: Multiple Choice (Type 1)

A: \dfrac{5}{4}\textbf{a} - \textbf{b}

B: \textbf{a} - \dfrac{\textbf{b}}{2}

C: \dfrac{3\textbf{a}}{2} + \textbf{b}

D: \dfrac{3\textbf{a}}{4} + \textbf{2\textbf{b}}

Answer: A

Workings:

\overrightarrow{FC} = \dfrac{\textbf{a}}{2}

\overrightarrow{BE} = \dfrac{3}{4}\textbf{a}

\overrightarrow{FE} = \dfrac{5}{4}\textbf{a} - \textbf{b}

Marks = 3


Question 4

KLMN is an irregular quadrilateral.

\overrightarrow{ML} = 2\textbf{a},

\overrightarrow{MN} = 2\textbf{a} + 2\textbf{b},

\overrightarrow{NK} = 3\textbf{a} + \textbf{b}

Point P is positioned such that LP : PK = 1 : 2

 

4(a):

Find the vector \overrightarrow{LK} in terms of \textbf{a} and \textbf{b}.

ANSWER: Multiple Choice (Type 1)

A: \textbf{a} + \textbf{b}

B: 2\textbf{a} + 2\textbf{b}

C: 3\textbf{a} + 3\textbf{b}

D: 4\textbf{a} + 4\textbf{b}

Answer: C

Workings:

\overrightarrow{LM} = -2\textbf{a},

\overrightarrow{MN} = 2\textbf{a} + 2\textbf{b}

\overrightarrow{NK} = 3\textbf{a} + \textbf{b}

Marks = 2

 

4(b):

Find the vector \overrightarrow{MP} in terms of \textbf{a} and \textbf{b}

ANSWER: Multiple Choice (Type 1)

A: 3\textbf{a} + \textbf{b}

B: 4\textbf{a} + 2\textbf{b}

C: 5\textbf{a} + 3\textbf{b}

D: 6\textbf{a} + 4\textbf{b}

Answer: A

Workings:

\overrightarrow{LP} = \dfrac{1}{3}(3\textbf{a} + 3\textbf{b})

\overrightarrow{LP} = \textbf{a} + \textbf{b}

\overrightarrow{MP} = \overrightarrow{ML} + \overrightarrow{LP} = 2\textbf{a} + \textbf{a} + \textbf{b}

\overrightarrow{MP} = 3\textbf{a} + \textbf{b} = \overrightarrow{NK}

Marks = 4


Question 5

The diagram below shows a regular hexagon ABCDEF.

X is the point at the centre of the hexagon.

\overrightarrow{XB} = \textbf{a}\\ \overrightarrow{ED} = \textbf{b}

Write down the following vectors in terms of \textbf{a} and \textbf{b}.

5(a):

\overrightarrow{BC}

ANSWER: Multiple Choice (Type 1)

A: \textbf{b} - \textbf{a}

B: 2\textbf{b} - 2\textbf{a}

C: \textbf{a} + \textbf{b}

D: 2\textbf{a} - 2\textbf{b}

Answer: A

Workings:

\overrightarrow{XC} = \overrightarrow{ED}

\overrightarrow{BC} = \overrightarrow{BX} + \overrightarrow{XC} = -\textbf{a} + \textbf{b}

Marks = 1

 

5(b):

\overrightarrow{BE}

ANSWER: Multiple Choice (Type 1)

A: -2\textbf{a}

B: 2\textbf{b}

C: 2\textbf{a}

D: -2\textbf{b}

Answer: A

Workings:

\overrightarrow{XE} = \overrightarrow{BX}

\overrightarrow{BE} = \overrightarrow{BX} + \overrightarrow{XE} = -\textbf{a} -\textbf{a} = -2\textbf{a}

Marks = 1

 

5(c):

\overrightarrow{AE}

ANSWER: Multiple Choice (Type 1)

A: \textbf{b} - 2\textbf{a}

B: \textbf{b} + 2\textbf{a}

C: \textbf{b} + 2\textbf{a}

D: \textbf{b} + 2\textbf{a}

Answer: A

Workings:

\overrightarrow{AF} = \overrightarrow{BX},          \overrightarrow{FX} = \overrightarrow{ED},          \overrightarrow{XE} = \overrightarrow{BX}

\overrightarrow{AE} = \overrightarrow{AF} + \overrightarrow{FX} + \overrightarrow{XE} = -\textbf{a} + \textbf{b} -\textbf{a} = -2\textbf{a} + \textbf{b}

Marks = 1

 

5(d):

\overrightarrow{FB}

ANSWER: Multiple Choice (Type 1)

A: \textbf{a} + \textbf{b}

B: \textbf{a} - \textbf{b}

C: -\textbf{a} + \textbf{b}

D: -\textbf{a} - \textbf{b}

Answer: A

Workings:

\overrightarrow{FA} = \overrightarrow{XB},          \overrightarrow{AB}  = \overrightarrow{ED}

\overrightarrow{FB} = \overrightarrow{FA} + \overrightarrow{AB} = -\textbf{a} + \textbf{b}

Marks = 1


Question 6

ABC is an isosceles triangle.

Point M is halfway along the triangle base, AC.

Point D is positioned such that \overrightarrow{AC} and \overrightarrow{AD} are collinear.

Point E is positioned such that \overrightarrow{AB} and \overrightarrow{AE} are collinear.

AB : BE = 3 : 2

\overrightarrow{MA} = \textbf{b},

\overrightarrow{AB} = 3\textbf{a},

\overrightarrow{AD} = 2\overrightarrow{AC}.

Find \overrightarrow{DE} in terms of \textbf{a} and \textbf{b}.

ANSWER: Multiple Choice (Type 1)

A: 5\textbf{a} + 4\textbf{b}

B: 3\textbf{a} + 4\textbf{b}

C: 4\textbf{a} + 5\textbf{b}

D: 4\textbf{a} + 3\textbf{b}

Answer: A

Workings:

\overrightarrow{DA} = 4\textbf{b}

\overrightarrow{BE} = 2\textbf{a}

\overrightarrow{AE} = 5\textbf{a}

\overrightarrow{DE} = 4\textbf{b} + 5\textbf{a}

Marks = 4


Question 7

On the diagram below:

AE is a straight line[/latex]

\overrightarrow{AB} = \textbf{a}\\ \overrightarrow{AC} = \textbf{b}\\ AC = CE\\ DE = \dfrac{1}{4}CE

Find expressions for the vectors below in terms of \textbf{a} and \textbf{b}.

7(a):

\overrightarrow{BC}

ANSWER: Multiple Choice (Type 1)

A: -\textbf{a} + \textbf{b}

B: -\textbf{a} - \textbf{b}

C: \textbf{a} + \textbf{b}

D: \textbf{a} - \textbf{b}

Answer: A

Workings:

\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC} = -\textbf{a} + \textbf{b}

Marks = 1

 

7(b):

\overrightarrow{DB}

ANSWER: Multiple Choice (Type 1)

A: \textbf{a} - \dfrac{7}{4}\textbf{b}

B: -\textbf{a} + \dfrac{7}{4}\textbf{b}

C: -\textbf{a} - \dfrac{7}{4}\textbf{b}

D: \textbf{a} + \dfrac{7}{4}\textbf{b}

Answer: A

Workings:

\overrightarrow{AC} = \overrightarrow{CE} = \textbf{b}

\overrightarrow{DE} = \dfrac{1}{4}\overrightarrow{CE} = \dfrac{1}{4}\textbf{b}

\overrightarrow{CD} = \overrightarrow{CE} - \overrightarrow{DE} = \textbf{b} - \dfrac{1}{4}\overrightarrow{b} = \dfrac{3}{4}\textbf{b}

\overrightarrow{DB} = \overrightarrow{DC} + \overrightarrow{CB} = -\dfrac{3}{4}\textbf{b} -\textbf{b} + \textbf{a} = -\dfrac{7}{4}\textbf{b} + \textbf{a}

Marks = 4


Question 8

ABC is a scalene triangle.

\overrightarrow{AC} = 3\textbf{b} ,        \overrightarrow{AB} = 2\textbf{a}

Point D is positioned such that BD:DC = 1:3

Point E is positioned such that AE:ED = 1:1

Find \overrightarrow{AE} in terms of \textbf{a} and \textbf{b}.

ANSWER: Multiple Choice (Type 1)

A: \dfrac{3}{4}(\textbf{a} + \dfrac{1}{2}\textbf{b})

B : \dfrac{3}{8}(\textbf{a} + \textbf{b})

C: \dfrac{3}{4}(\dfrac{1}{2}\textbf{a} + \dfrac{1}{2}\textbf{b})

D: \dfrac{3}{4}(\dfrac{1}{2}\textbf{a} + \textbf{b})

Answer: A

Workings:

\overrightarrow{BC} = -2\textbf{a} + 3\textbf{b}

\overrightarrow{BD} = - \dfrac{\textbf{a}}{2} + \dfrac{3}{4}\textbf{b}

\overrightarrow{AD} = 2\textbf{a}-\dfrac{\textbf{a}}{2} + \dfrac{3}{4}\textbf{b} = \dfrac{3}{2}\textbf{a} \dfrac{3}{4}\textbf{b}

\overrightarrow{AE} = \dfrac{1}{2}(\dfrac{3}{2}\textbf{a} + \dfrac{3}{4}\textbf{b})

= \dfrac{3}{4}\textbf{a} + \dfrac{3}{8}\textbf{b} = \dfrac{3}{4}(\textbf{a}+\dfrac{\textbf{b}}{2})

Marks = 5


Question 9

On the diagram below:

\overrightarrow{AB} = \overrightarrow{BC} = \textbf{a}\\ \overrightarrow{AD} = 3\textbf{b}

AE is a straight line

CBEF is a parallelogram

AD : BE : CF = 3 : 2 : 2

Find expressions for the vectors below in terms of \textbf{a} and \textbf{b}.

 

9(a):

\overrightarrow{DC}

ANSWER: Multiple Choice (Type 1)

A: 2\textbf{a} - 3\textbf{b}

B: \textbf{a} + 3\textbf{b}

C: 3\textbf{a} + 2\textbf{b}

D: -2\textbf{a} - 3\textbf{b}

Answer: A

Workings:

\overrightarrow{DC} = \overrightarrow{DA} + \overrightarrow{AB} + \overrightarrow{BC}

= -3\textbf{b} + \textbf{a} + \textbf{a} = 2\textbf{a} - 3\textbf{b}

Marks = 1

 

9(b):

\overrightarrow{FD}

ANSWER: Multiple Choice (Type 1)

A: -2\textbf{a} + \textbf{b}

B: -\textbf{a} + 2\textbf{b}

C: 3\textbf{b}

D: \textbf{a} + 4\textbf{b}

Answer: A

Workings:

AD : BE : CF = 3 : 2 : 2

AD : BE : CF = 3\textbf{b} : 2\textbf{b} : 2\textbf{b}

CF = 2\textbf{b}\\ \overrightarrow{FD} = \overrightarrow{FC} + \overrightarrow{CB} + \overrightarrow{BA} + \overrightarrow{AD}\\ = -2\textbf{b} -\textbf{a}-\textbf{a}+3\textbf{b}\\ =-2\textbf{a}+\textbf{b}

Marks = 

 

9(c):

DE is extended upwards until it hits the line CF.

The point of intersection is X.

What is the ratio CX : XF?

ANSWER: Simple Text Answer

Answer: 1 : 1

Workings:

\overrightarrow{DE} = -3\textbf{b}+\textbf{a}+2\textbf{b}

=\textbf{a}-\textbf{b}

\overrightarrow{EX} = x\overrightarrow{DE}

Need 1 lot of \overrightarrow{EX} to reach \overrightarrow{CF}, and gives:

\overrightarrow{CX} = \overrightarrow{XF} = \textbf{b}

CF : XF = 1 : 1

Marks = 3


Question 10

On the diagram below:

\overrightarrow{AD} = \textbf{a}\\ \overrightarrow{DB} = 3\textbf{b} - \textbf{a}

AC and AB are straight lines

AD : DY : YC = 1 : 1 : 1

AX : XB = 2 : 1

 

10(a):

Find an expression for the vector XY in terms of \textbf{a} and \textbf{b}.

ANSWER: Multiple Choice (Type 1)

A: 2(\textbf{a} - \textbf{b})

B: 2\textbf{a} - \textbf{b}

C: \textbf{a} - 3\textbf{b}

D: 2(2\textbf{a} - \textbf{b})

Answer: A

Workings:

\overrightarrow{AD} : \overrightarrow{DY} : \overrightarrow{YC} = 1 : 1 : 1

\overrightarrow{AD} = \overrightarrow{DY} = \overrightarrow{YC} = \textbf{a}

\overrightarrow{BC} = \overrightarrow{BD} + \overrightarrow{DY} + \overrightarrow{YC}

= -(3\textbf{b} - \textbf{a}) + \textbf{a} + \textbf{a}

=\textbf{a} - 3\textbf{b} + \textbf{a} + \textbf{a}

= 3\textbf{a} - 3\textbf{b}

= 3(\textbf{a}-\textbf{b})

\\

\overrightarrow{AB} = \overrightarrow{AD} + \overrightarrow{DB}

= \textbf{a} + 3\textbf{b} - \textbf{a}

= 3\textbf{b}

\overrightarrow{AX} : \overrightarrow{XB} = 2 : 1

\overrightarrow{AX} = 2\textbf{b}

\\

\overrightarrow{XY} = \overrightarrow{XA} + \overrightarrow{AD} + \overrightarrow{DY} = -2\textbf{b} + \textbf{a} + \textbf{a}

=2\textbf{a}-2\textbf{b}

=2(\textbf{a}-\textbf{b})

Marks = 3

 

10(b):

Is XY parallel to BC?

ANSWER: Multiple Choice (Type 2)

A: Yes

B: No

Answer: A

Workings:

\overrightarrow{BC} is a multiple of \overrightarrow{XY}, so they are going in the same direction.

Therefore they are parallel.

Marks = 1