Question 1

LEVEL 8

PQ is a straight line with X as the midpoint.

PR is a straight line with M as the midpoint.

\overrightarrow{PX}=\textbf{a}

\overrightarrow{PM}=\textbf{b}

Find the vector \overrightarrow{QR} in terms of \mathbf{a} and \mathbf{b}.

 

Select the correct answer from the list below:

A: -2\textbf{a}+-2\textbf{b}

B: 2\textbf{a}-2\textbf{b}

C: 2\textbf{a}+2\textbf{b}

D: -2\textbf{a}+2\textbf{b}

CORRECT ANSWER:   D: -2\textbf{a}+2\textbf{b}

WORKED SOLUTION:

\overrightarrow{QR} = - \overrightarrow{PQ} + \overrightarrow{PR}

\overrightarrow{PQ} = 2\overrightarrow{PX} = 2\mathbf{a}

\overrightarrow{PR} = 2\overrightarrow{PM} = 2\mathbf{b}

So,

\overrightarrow{QR} = -2\mathbf{a} + 2\mathbf{b}

Question 2

LEVEL 8

PQ is a straight line with X as the midpoint.

PR is a straight line with M as the midpoint.

\overrightarrow{PQ}=\textbf{a}

\overrightarrow{PR}=\textbf{b}

Find the vector \overrightarrow{XM} in terms of \mathbf{a} and \mathbf{b}.

 

Select the correct answer from the list below:

A: \overrightarrow{XM}=-\dfrac{1}{2}\textbf{a}+\dfrac{1}{2}\textbf{b}

B: \overrightarrow{XM}=2\textbf{a}-\dfrac{1}{2}\textbf{b}

C: \overrightarrow{XM}=\textbf{a}+\dfrac{1}{2}\textbf{b}

D: \overrightarrow{XM}=\textbf{a}+\textbf{b}

CORRECT ANSWER:   A: \overrightarrow{XM}=-\dfrac{1}{2}\textbf{a}+\dfrac{1}{2}\textbf{b}

WORKED SOLUTION:

\overrightarrow{XM} = - \overrightarrow{PX} + \overrightarrow{PM}

\overrightarrow{PX} = \dfrac{1}{2} \overrightarrow{PQ} = \dfrac{1}{2} \mathbf{a}

\overrightarrow{PM} = \dfrac{1}{2} \overrightarrow{PR} = \dfrac{1}{2} \mathbf{a}

So,

\overrightarrow{XM} = -\dfrac{1}{2}\textbf{a}+\dfrac{1}{2}\textbf{b}

\overrightarrow{XM}=-\dfrac{1}{2}\textbf{a}+\dfrac{1}{2}\textbf{b}

Question 3

LEVEL 8

\overrightarrow{QR}=5\overrightarrow{PS}

\overrightarrow{QX}=\dfrac{2}{3}\overrightarrow{XR}

Find \overrightarrow{SX} in terms of \mathbf{a} and \mathbf{b}.

Select the correct answer from the list below:

A: \textbf{a}+\textbf{b}

B: 2\textbf{a}+3\textbf{b}

C: -\textbf{a}-\textbf{b}

D: -2\textbf{a}+3\textbf{b}

CORRECT ANSWER:   A: \textbf{a}+\textbf{b}

WORKED SOLUTION:

Looking at the diagram we’re given, we can see that there is no direct route from S to R, so we need to think of one:

\overrightarrow{SX}=\overrightarrow{SP}+\overrightarrow{PQ}+\overrightarrow{QX}

 

Well, we already have \overrightarrow{PQ} and can find \overrightarrow{SP} by multiplying \overrightarrow{PS} by -1, so we only need to find \overrightarrow{QX} .

We are given that \overrightarrow{QR}=5\overrightarrow{PS}, but we know \overrightarrow{PS}=\textbf{a}, so we can substitute that in: \overrightarrow{QR}=5\overrightarrow{PS}=5\textbf{a}.

Now, we need to figure out how much of 5a \overrightarrow{QX} is worth. Well, we are told that \overrightarrow{QX}=\dfrac{2}{3}\overrightarrow{XR} , so we can rewrite \overrightarrow{QR} as:

\overrightarrow{QR}=\overrightarrow{QX}+\overrightarrow{XR}

\overrightarrow{QR}=\dfrac{2}{3}\overrightarrow{XR} +\overrightarrow{XR}

\overrightarrow{QR}=\dfrac{2}{3}\overrightarrow{XR} +\dfrac{3}{3}\overrightarrow{XR}

\overrightarrow{QR}=\dfrac{5}{3}\overrightarrow{XR}

And now, because we know that \overrightarrow{QR} =5\textbf{a} we can substitute that in to the equation above.

5\textbf{a} =\dfrac{5}{3}\overrightarrow{XR}

And now we can rearrange this to find \overrightarrow{XR} :

5\textbf{a} =\dfrac{5}{3}\overrightarrow{XR}

3\times5\textbf{a} =5\overrightarrow{XR}

15\textbf{a} =5\overrightarrow{XR}

15\textbf{a}\div5 =\overrightarrow{XR}

3\textbf{a} =\overrightarrow{XR}

Now that we have \overrightarrow{XR}, we can substitute this to find \overrightarrow{QX}

\overrightarrow{QX}=\dfrac{2}{3}\overrightarrow{XR}

\overrightarrow{QX}=\dfrac{2}{3}\times3\textbf{a}

\overrightarrow{QX}=2\textbf{a}

We now have all the vectors we need:

\overrightarrow{SP}=-\overrightarrow{SP}=-\textbf{a}

\overrightarrow{PQ}=\textbf{b}

\overrightarrow{QX}=2\textbf{a}

So now, we just need to add these up:

\overrightarrow{SX}=\overrightarrow{SP}+\overrightarrow{PQ}+\overrightarrow{QX}

\overrightarrow{SX}=-\textbf{a}+\textbf{b}+2\textbf{a}

\overrightarrow{SX}=\textbf{a}+\textbf{b}

Question 4

LEVEL 8

The diagram shows a hexagon ABCDEF, centre O, with vectors \overrightarrow{OB} = \mathbf{a} and \overrightarrow{ED} = \mathbf{b}.

Find an expression for the vector \overrightarrow{OA} in terms of \mathbf{a} and \mathbf{b}.

Select the correct answer from the list below:

A: \mathbf{a} + 2\mathbf{b}

B: \mathbf{a} - 2\mathbf{b}

C: 2\mathbf{a} + \mathbf{b}

D: 2\mathbf{a} - \mathbf{b}

CORRECT ANSWER:   B: \mathbf{a} - 2\mathbf{b}

WORKED SOLUTION:

\overrightarrow{CA} = - \overrightarrow{OC} + \overrightarrow{OB} - \overrightarrow{AB}

Then

\overrightarrow{CA} = - \mathbf{b} + \mathbf{a} - \mathbf{b} = \mathbf{a} - 2\mathbf{b}

Question 5

LEVEL 8

\overrightarrow{ED}=6\textbf{a}-3\textbf{b}

\overrightarrow{DC}=4\textbf{b}

Given that AC forms a straight line such that AB:BC=5:1

\overrightarrow{BC}=\dfrac{1}{3}\overrightarrow{ED},

X is the midpoint of AD.

Find \overrightarrow{DX} in terms of \mathbf{a} and \mathbf{b}.

Select the correct answer from the list below:

A: -12\textbf{a}+10\textbf{b}

B: -6\textbf{a}+5\textbf{b}

C: 13\textbf{a}+7\textbf{b}

D: 5\textbf{a}+-9\textbf{b}

CORRECT ANSWER:   B: -6\textbf{a}+5\textbf{b}

WORKED SOLUTION:

With vectors it is always got practice to write in any of the vectors we know or can deduce. For example, we can figure out \overrightarrow{BC} .

\overrightarrow{BC}=\dfrac{1}{3}\overrightarrow{ED}

\overrightarrow{BC}=\dfrac{1}{3}(6\textbf{a}-3\textbf{b})

\overrightarrow{BC}=2\textbf{a}-\textbf{b}

We are also told the ratio AB:BC = 5:1, meaning that \overrightarrow{AB} will be 5 lots of \overrightarrow{BC}

\overrightarrow{AB}=5\times \overrightarrow{BC}

\overrightarrow{AB}=5(2\textbf{a}-\textbf{b})

\overrightarrow{AB}=10\textbf{a}-5\textbf{b}

 

And now we can get on to the question. We need to find the vector \overrightarrow{DX}= , which will be half of \overrightarrow{DA} so we need to find this first.
We don’t have the vector \overrightarrow{DA} , but we can find it by putting other vectors we do know together.

\overrightarrow{DA}=\overrightarrow{DC}+\overrightarrow{CB}+\overrightarrow{BA}

 

The only problem we have here is that some of our vectors are the wrong way, so we need to multiply them by -1 to get them going in the right direction.
\overrightarrow{CB} =-\overrightarrow{BC}=-(2\textbf{a}-\textbf{b})=-2\textbf{a}+\textbf{b}

\overrightarrow{BA} =-\overrightarrow{AB}=-(10\textbf{a}-5\textbf{b})=-10\textbf{a}+5\textbf{b}

We can now substitute these into our previous “journey”

\overrightarrow{DA}=\overrightarrow{DC}+\overrightarrow{CB}+\overrightarrow{BA}

\overrightarrow{DA}=4\textbf{b}+(-2\textbf{a}+\textbf{b} )+(- 10\textbf{a}+5\textbf{b} )

\overrightarrow{DA}=4\textbf{b}-2\textbf{a}+\textbf{b} - 10\textbf{a}+5\textbf{b}

\overrightarrow{DA}=-12\textbf{a}+10\textbf{b}

The last thing we need to do now is, that because X is the midpoint of DA, is half the vector \overrightarrow{DA}=-12\textbf{a}+10\textbf{b}

\overrightarrow{DX}=\frac{1}{2}\overrightarrow{DA}

\overrightarrow{DX}=\frac{1}{2}(-12\textbf{a}+10\textbf{b})

\overrightarrow{DX}=-6\textbf{a}+5\textbf{b}